Skip to main content
Log in

Temperature Dependence of Crystal Structure and THz Absorption Spectra of Organic Nonlinear Optical Stilbazolium Material for High-Output THz-Wave Generation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A stilbazolium material comprising 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate (DAST), which has a large nonlinear optical susceptibility, was studied for application in terahertz (THz)-wave generation. The temperature-dependent structure of the DAST crystal was measured by using powder X-ray diffraction from −100 to 200 °C, indicating a volume expansion of 4.6 %. The lattice constants show anisotropic thermal expansion. Also, the temperature dependence of THz absorption spectra was measured by terahertz time-domain spectroscopy (THz-TDS) in the temperature range varying from −80 to 88.1 °C. A strong absorption peak was found at around 1 THz, shifting slightly toward a lower frequency with increasing temperature. The temperature dependence of the THz spectra was compared with that of X-ray diffraction. The shifting of THz-vibrational frequencies of the DAST crystal suggests that the change in its lattice structure is temperature dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.-M. Duan, H. Konami, S. Okada, H. Oikawa, H. Matsuda, and H. Nakanishi, J. Phys. Chem. 100, 17780 (1996).

    Article  Google Scholar 

  2. H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, Proc. MRS Int. Mtg. Adv. Mater. 1, 97 (1989).

    Google Scholar 

  3. S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).

    Article  Google Scholar 

  4. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  Google Scholar 

  5. U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).

    Article  Google Scholar 

  6. T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).

    Article  Google Scholar 

  7. T. Taniuchi, S. Ikeda, Y. Mineno, S. Okada, and H. Nakanishi, Jpn. J. Appl. Phys. 44, L932 (2004).

    Article  Google Scholar 

  8. H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).

    Article  Google Scholar 

  9. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, Jpn. J. Appl. Phys. 46, 7321 (2007).

    Article  Google Scholar 

  10. T. Matsukawa, Y. Mineno, T. Odani, S. Okada, T. Taniuchi, and H. Nakanishi, J. Cryst. Growth 299, 344 (2007).

    Article  Google Scholar 

  11. T. Matsukawa, M. Yoshimura, Y. Takahashi, Y. Takemoto, K. Takeya, I. Kawayama, S. Okada, M. Tonouchi, Y. Kitaoka, Y. Mori, and T. Sasaki, Jpn. J. Appl. Phys. 49, 075502 (2010).

    Article  Google Scholar 

  12. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, Opt. Lett. 32, 2885 (2008).

    Article  Google Scholar 

  13. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, Opt. Ex. 17, 12859 (2008).

    Article  Google Scholar 

  14. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, Opt. Ex. 18, 17306 (2010).

    Article  Google Scholar 

  15. C. P. Hauri, C. Ruchert, C. Vicario, and F. Ardana, Appl. Phys. Lett. 99, 161116 (2011).

    Article  Google Scholar 

  16. J. Hebling, K.-L. Yeh, M. C. Hoffmenn, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, B6 (2012).

    Article  Google Scholar 

  17. T. Matsukawa, T. Notake, K. Nawata, S. Inada, S. Okada, and H. Minamide, Opt. Mater. 36, 1995 (2014).

    Article  Google Scholar 

  18. T. Matsukawa, Y. Yoshida, A. Hoshikawa, S. Okada, and T. Ishigaki, CrystEngComm, 17, 2616 (2015).

    Article  Google Scholar 

  19. S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, R. Note, and Y. Kawazoe, Chem. Phys. Lett. 432, 157 (2006).

    Article  Google Scholar 

  20. K. L. Nguyen, T. Friscic, G. M. Day, L. F. Gladden, and W. Jones, Nat. Mater. 6, 206 (2007).

    Article  Google Scholar 

  21. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, Opt. Lett. 25, 911 (2000).

    Article  Google Scholar 

  22. H. Hoshina, Y. Morisawa, H. Sato, H. Minamide, I. Noda, Y. Ozaki, and C. Otani, Phys. Chem. Chem. Phys. 13, 9173 (2011).

    Article  Google Scholar 

  23. M. D. King, W. D. Buchanan, and T. M. Korter, J. Phys. Chem. A 114, 9570 (2010).

    Article  Google Scholar 

  24. Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, Chem. Lett. 35, 1128 (2006).

    Article  Google Scholar 

  25. S. Wietzke, C. Jansen, M. Reuter, T. Jung, J. Hehl, D. Kraft, S. Chatterjee, A. Greiner, and M. Koch, Appl. Phys. Lett. 97, 022901 (2010).

    Article  Google Scholar 

  26. M. Komatsu, M. Mizuno, S. Saito, K. Fukunaga, and Y. Ohki, J. Appl. Phys. 117, 133102 (2015).

    Article  Google Scholar 

  27. C. Kittel, 6th ed. Wiley & Sons, Inc., New York, (1986).

  28. Y. Mineno, T. Matsukawa, S. Ikeda, T. Taniuchi, H. Nakanishi, S. Okada, H. Adachi, M. Yoshimura, Y. Mori, and T. Sasaki, Mol. Cryst. Liq. Cryst. 463, 55 (2007).

    Article  Google Scholar 

  29. S. Soma, H. Takahashi, T. Taniuchi, and H. Ito, Chem. Phys. 245, 359 (1999).

    Article  Google Scholar 

  30. R. Oishi, M. Yonemura, T. Morishima, A. Hoshikawa, T. Ishigaki, and T. Kamiyama, J. Appl. Crystallogr. 45, 299 (2012).

    Article  Google Scholar 

  31. H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, and K. Kawase, Appl. Spectroscopy 63, 81 (2009).

    Article  Google Scholar 

  32. H. Hoshina, S. Ishii, and C. Otani, J. Mol. Struct., 1069, 152 (2012).

    Article  Google Scholar 

  33. Z. Glavcheva, H. Umezawa, Y. Mineno, T. Odani, S. Okada, S. Ikeda, T. Taniuchi, and H. Nakanishi, Jpn. J. Appl. Phs. 44, 5231 (2005).

    Article  Google Scholar 

  34. L. B. McCusker, R. B. Von Dreele, D. E. Cox. D. Louer, and P. Scardi, J. Appl. Cryst. 32, 36 (1999).

    Article  Google Scholar 

  35. O. D. Jurchescu, A. Meetsma, and T. T. M. Palastra, Acta Cryst. B 62, 330 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Y. Yoshida, Dr. Y. Onuki, Mr. M. Fujii, Mr. N. Shibata, and Mr. T. Nakazawa of Ibaraki University, and professor S. Okada of Yamagata University for many useful discussions and comments. We also thank Ms. A. Hayashi of RIKEN for their cooperation in a THz-spectroscopy measurement. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 15 K20880, 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Matsukawa.

Electronic supplementary material

ESM 1

Crystallographic information file (CIF) of DAST. (CIF 22.4kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukawa, T., Hoshina, H., Hoshikawa, A. et al. Temperature Dependence of Crystal Structure and THz Absorption Spectra of Organic Nonlinear Optical Stilbazolium Material for High-Output THz-Wave Generation. J Infrared Milli Terahz Waves 37, 540–550 (2016). https://doi.org/10.1007/s10762-016-0246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0246-0

Keywords

Navigation