Advertisement

Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

  • Takeo Minamikawa
  • Kenta Hayashi
  • Tatsuya Mizuguchi
  • Yi-Da Hsieh
  • Dahi Ghareab Abdelsalam
  • Yasuhiro Mizutani
  • Hirotsugu Yamamoto
  • Tetsuo Iwata
  • Takeshi Yasui
Article

Abstract

A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency (f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10−13 and a relative precision of 8.8 × 10−12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

Keywords

Terahertz Frequency comb Absolute frequency measurement Photoconductive antenna Photoconductive mixing Frequency metrology 

Notes

Acknowledgments

This work was supported by Collaborative Research Based on Industrial Demand from the Japan Science and Technology Agency, and a Grant-in-Aid for Scientific Research No. 26246031 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors thank Drs. Hideyuki Ohtake and Jun Takayanagi of AISIN SEIKI Co., Ltd., Japan, for use of the IMRA laser.

References

  1. 1.
    I. F. Akyildiz, J. M. Jornet, C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun., vol. 12, pp. 16–32, 2014.Google Scholar
  2. 2.
    A. J. Seeds, H. Shams, M. J. Fice, C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Tech., vol. 33, pp. 579–587, 2015.Google Scholar
  3. 3.
    B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photon., vol. 1, pp. 517–525, 2007.Google Scholar
  4. 4.
    T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser, Photon. Rev., vol. 3, pp. 123–137, 2009.Google Scholar
  5. 5.
    M. Asada, S. Suzuki, N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys., vol. 47, pp. 4375–4384, 2008.Google Scholar
  6. 6.
    S. Kohjiro, K. Kikuchi, M. Maezawa, T. Furuta, A. Wakatsuki, H. Ito, N. Shimizu, T. Nagatsuma, Y. Kado, “A 0.2–0.5 THz single-band heterodyne receiver based on a photonic local oscillator and a superconductor-insulator-superconductor mixer,” Appl. Phys. Lett., vol. 93, art. 093508, 2008.Google Scholar
  7. 7.
    J. J. A. Baselmans, M. Hajenius, J. R. Gao, T. M. Klapwijk, P. A. J. de Korte, B. Voronov, G. Gol’tsman, “Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers,” Appl. Phys. Lett., vol. 84, pp. 1958–1960, 2004.Google Scholar
  8. 8.
    T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett., vol. 88, art. 241104, 2006.Google Scholar
  9. 9.
    T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 191–201, 2011.Google Scholar
  10. 10.
    H. Füser, M. Bieler, “Terahertz frequency combs,” J. Infrared Millim. Terahertz Waves, vol. 35, pp. 585–609, 2013.Google Scholar
  11. 11.
    S. Yokoyama, R. Nakamura, M. Nose, T. Araki, T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express, vol. 16, pp. 13052–13061, 2008.Google Scholar
  12. 12.
    T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express, vol. 17, pp. 17034–17043, 2009.Google Scholar
  13. 13.
    H. Füser, R. Judaschke, M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett., vol. 99, art. 121111, 2011.Google Scholar
  14. 14.
    H. Ito, S. Nagano, M. Kumagai, M. Kajita, Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express, vol. 6, art. 102202, 2013.Google Scholar
  15. 15.
    T. Yasui, K. Hayashi, R. Ichikawa, H. Cahyadi, Y.-D. Hsieh, Y. Mizutani, H. Yamamoto, T. Iwata, H. Inaba, K. Minoshima, “Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings,” Opt. Express, vol. 23, pp. 11367–11377, 2015.Google Scholar
  16. 16.
    T. Yasui, M. Nose, A. Ihara, K. Kawamoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Araki, “Fiber-based, hybrid terahertz spectrometer using dual fiber combs,” Opt. Lett., vol. 35, pp. 1689–1691, 2010.Google Scholar
  17. 17.
    Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, T. Yasui, “Terahertz comb spectroscopy traceable to microwave frequency standard,” IEEE Trans. THz Sci. Technol., vol. 3, pp. 322–330, 2013.Google Scholar
  18. 18.
    Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Reports, vol. 4, art. 3816, 2014.Google Scholar
  19. 19.
    T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Reports, vol. 5, art. 10786, 2015.Google Scholar
  20. 20.
    Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express, vol. 18, pp. 1667–1676, 2010.Google Scholar
  21. 21.
    I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, M. Tsuchiya, “Tunable all-optical pulse compression and stretching via doublet Brillouin gain lines in an optical fiber,” Opt. Lett., vol. 33, pp. 1192–1194, 2008.Google Scholar
  22. 22.
    M. Kourogi, K. Nakagawa, M. Ohtsu, “Wide span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron., vol. 29, pp. 2693–2701, 1993.Google Scholar
  23. 23.
    M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett., vol. 36, pp. 3969–3971, 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Takeo Minamikawa
    • 1
    • 2
  • Kenta Hayashi
    • 1
  • Tatsuya Mizuguchi
    • 1
  • Yi-Da Hsieh
    • 1
    • 2
  • Dahi Ghareab Abdelsalam
    • 1
    • 2
  • Yasuhiro Mizutani
    • 2
    • 3
  • Hirotsugu Yamamoto
    • 2
    • 4
  • Tetsuo Iwata
    • 1
    • 2
  • Takeshi Yasui
    • 1
    • 2
  1. 1.Institute of Technology and ScienceTokushima UniversityTokushimaJapan
  2. 2.JST, ERATO, MINOSHIMA Intelligent Optical Synthesizer ProjectTokushimaJapan
  3. 3.Graduate School of EngineeringOsaka UniversitySuitaJapan
  4. 4.Center for Optical Research and EducationUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations