Room-Temperature AlGaN/GaN Terahertz Plasmonic Detectors with a Zero-Bias Grating

  • H. Spisser
  • A.-S. Grimault-Jacquin
  • N. Zerounian
  • A. Aassime
  • L. Cao
  • F. Boone
  • H. Maher
  • Y. Cordier
  • F. Aniel


In this paper, we present sensitivity measurement as well as measured and calculated absorption spectra for AlGaN/GaN THz plasmonic detector made of a metallic grating in-between two ohmic contacts. Detectors with different grating patterns have been fabricated and their sensitivity, reaching 1.9 μA/W at 77 K and 0.7 μA/W at 300 K, measured with a voltage applied between the ohmic contacts. It is the first time that such a detector shows THz detection with no voltage applied on the grating, namely with a bidimensional electron gas (2DEG) having a homogeneous electron density. These results are consistent with detection by drag-effect rectification. Measurements held between 0.648 and 0.690 THz show that the dependence of the sensitivity on the frequency follows the absorption spectrum, indicating that absorption is a crucial step in the detection process. Further simulations of absorption spectra show the tunability offered by such detector and allow us to predict frequency behavior for grating-biased detectors as well, in which the rectification is mainly governed by ratchet effect.


Detector Gallium nitride Grating Semiconductor device Submillimeter wave device THz device 



The authors acknowledge the support from GANEX (ANR-11-LABX-0014). GANEX belongs to the public funded Investissements d’Avenir program managed by the French ANR agency. This work was partly supported by the French RENATECH network.


  1. 1.
    L. Cao, A.-S. Grimault-Jacquin, F. Aniel, Applied Physics A, 109 (4), 985 (2012).Google Scholar
  2. 2.
    L. Cao, A.S. Grimault-Jacquin, N. Zerounian, F. Aniel, Infrared Physics and Technology 63, 157 (2014).Google Scholar
  3. 3.
    A. Malekabadi, S. Charlebois, D. Deslandes, F. Boone, S. Member, IEEE Transactions on Terahertz Science and Technology 4(4), 447 (2014).Google Scholar
  4. 4.
    M. Dyakonov, M. Shur, S. Petersburg, Physical Review Letters 71(15), 2465 (1993).Google Scholar
  5. 5.
    J.Q. Lu, M. Shur, J. Hesler, R. Weikle, IEEE Electron Device Letters 19(10), 373 (1998).Google Scholar
  6. 6.
    W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, M.S. Shur, Applied Physics Letters 85(4), 675 (2004).Google Scholar
  7. 7.
    A. Di Gaspare, R. Casini, V. Foglietti, V. Giliberti, E. Giovine, M. Ortolani, Applied Physics Letters 100(20), 203504 (2012).Google Scholar
  8. 8.
    X.G. Peralta, S.J. Allen, M.C.Wanke, N.E. Harff, J.a. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, J.P. Eisenstein, Applied Physics Letters 81(9), 1627 (2002).Google Scholar
  9. 9.
    D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet,W. Knap, T. Nishimura, T. Otsuji, Y.M. Meziani, G.M. Tsymbalov, V.V. Popov, Optics express 18(6), 6024 (2010).Google Scholar
  10. 10.
    Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. Boubanga Tombet, Y.M. Meziani, V.V. Popov, W. Knap, T. Suemitsu, T. Otsuji, Applied Physics Letters 104(25), 251114 (2014).Google Scholar
  11. 11.
    S. Boubanga-Tombet, Y. Tanimoto, A. Satou, T. Suemitsu, Y.Wang, H. Minamide, H. Ito, D.V. Fateev, V.V. Popov, T. Otsuji, Applied Physics Letters 262104, 1 (2014).Google Scholar
  12. 12.
    W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C.a. Saylor, L.C. Brunel, Journal of Applied Physics 91(11), 9346 (2002).Google Scholar
  13. 13.
    J.D. Sun, H. Qin, R.A. Lewis, X.X. Yang, Y.F. Sun, Z.P. Zhang, X.X. Li, X.Y. Zhang, Y. Cai, D.M. Wu, B.S. Zhang, aplied physics letters 106, 031119 (2015).Google Scholar
  14. 14.
    T. Tanigawa, T. Onishi, S. Takigawa, T. Otsuje, S. Company, P. Corporation, T. Tanaka, in device research conference, vol. 024519 (IEEE, south bend, IN, 2010), vol. 024519, pp. 167168 (2010).Google Scholar
  15. 15.
    A.V. Muravjov, D.B. Veksler, V.V. Popov, O.V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R.E. Peale, M.S. Shur, Applied Physics Letters 96(4), 042105 (2010).Google Scholar
  16. 16.
    (V.V. Popov, Journal of Infrared, Millimeter, and Terahertz Waves 32(10), 1178 (2011)).Google Scholar
  17. 17.
    H. Spisser, A.S. Grimault-Jacquin, N. Zerounian, A. Aassime, L. Cao, F. Boone, H. Maher, Y. Cordier, F. Aniel, in Global Symposium on Millimeter-Waves, Montreal (2015).Google Scholar
  18. 18.
    V.V. Popov, Applied Physics Letters 102(25), 253504 (2013).Google Scholar
  19. 19.
    G.R. Aizin, V.V. Popov, O.V. Polischuk, Applied Physics Letters 89(14), 143512 (2006).Google Scholar
  20. 20.
    I. Rozhansky, V. Kachorovskii, M. Shur, Physical Review Letters 114(24), 246601 (2015).Google Scholar
  21. 21.
    O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, a.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, Journal of Applied Physics 87(1), 334 (2000).Google Scholar
  22. 22.
    X.G. He, D.G. Zhao, D.S. Jiang, Chinese Physics B 24(6), 067301 (2015).Google Scholar
  23. 23.
    T. Watanabe, S.A. Boubanga-tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y.M. Meziani, Y. Wang, H. Minamide, IEEE sensors journsl 13(1), 89 (2013).Google Scholar
  24. 24.
    M. Sirbu, S.B.P. Lepaul, F. Aniel, IEEE Transactions on Microwave Theory and Techniques 53(9), 2991 (2005).Google Scholar
  25. 25.
    D.V. Fateev, V.V. Popov, T. Otsuji, Y.M. Meziani, in Metamaterials, 1, pp. 532534 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • H. Spisser
    • 1
    • 3
  • A.-S. Grimault-Jacquin
    • 1
  • N. Zerounian
    • 1
  • A. Aassime
    • 1
  • L. Cao
    • 2
  • F. Boone
    • 3
  • H. Maher
    • 3
  • Y. Cordier
    • 4
  • F. Aniel
    • 1
  1. 1.Institut d’Electronique Fondamentale, Univ Paris Sud, CNRS, Universite Paris-SaclayOrsay cedexFrance
  2. 2.State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.Institut Interdisciplinaire d’Innovation Technologique, Universite de SherbrookeSherbrookeCanada
  4. 4.Centre de Recherche sur l’Hetero-Epitaxie et ses Applications, CNRS UPR-10ValbonneFrance

Personalised recommendations