Skip to main content
Log in

Multi-Band Terahertz Filter with Independence to Polarization and Insensitivity to Incidence Angles

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Multi-band terahertz filters with independence to polarization and insensitivity to incidence angles are designed, fabricated, and measured, respectively. The promoted multi-band terahertz filters consist of two and three concentric ring complementary structure. Compared with the dual-ring structure, the triple-ring structure not only increases numbers of the pass bands but also heightens the out-of-band rejection of the middle band. The physical mechanisms of the multi-band resonant responses are clarified using three different configurations and distribution of magnetic fields and current surfaces. At normal incidence, the triple-ring structure is independent to polarization due to the symmetry. At oblique incidences, transmission magnitudes as a function of the frequency are firstly demonstrated for the multi-band filter; it is found that this structure shows great insensitivity to incidence angles. The multi-band filter also has advantages in easy fabrication. The encouraging results afforded by the design of the filters could find applications in multi-band sensors, terahertz communication systems, and other emerging terahertz technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Ferguson and X.C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26 (2002).

    Article  Google Scholar 

  2. G. P. Williams, Filling the THz gap-high power sources and applications. Reports on Progress in Physics 69, 301 (2006).

    Article  Google Scholar 

  3. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B 75, 041102 (R)(2007).

  4. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Active metamaterial terahertz devices. Nature 444, 597 (2006).

    Article  Google Scholar 

  5. V. Astley, K. S. Reichel, J. Jones), R. Mendis and D. M. Mittleman, Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities, Appl. Phys. Lett. 100, 231108 (2012).

    Article  Google Scholar 

  6. L. Wang, Z. Geng, X. He, Y. Cao, Y. Yang, H. Chen, Realization of band-pass and low-pass filters on a single chip in terahertz regime, Optoelec. Lett. 11, 33 (2015)

    Article  Google Scholar 

  7. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, Bilayer-fish-scale ultrabroad terahertz bandpass filter, Opt. Let. 37, 906 (2012).

    Article  Google Scholar 

  8. R. Dickie, R. Cahill, V. F. Fusco, H. S. Gamble, and N. Mitchell, THz frequency selective surface filters for earth observation remote sensing instruments. IEEE Trans. Terahertz Sci. Technol. 2, 450 (2011).

    Article  Google Scholar 

  9. A. K. Azad, Y. Zhao, W. Zhang, and M. He, Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays. Opt. Lett. 31, 2637 (2006).

    Article  Google Scholar 

  10. X. Lu, J. Han, and W. Zhang, Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles. Appl. Phys. Lett. 92, 121103 (2008).

    Article  Google Scholar 

  11. J. Li, Terahertz wave narrow bandpass filter based on photonic crystal, Optics Communications 283, 2647 (2010).

    Article  Google Scholar 

  12. J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, Broadband resonant terahertz transmission in a composite metal-dielectric structure. Opt. Express 17, 16527 (2009).

    Article  Google Scholar 

  13. O. Paul, R. Beigang and M. Rahm, Highly selective terahertz bandpass filters based on trapped mode excitation. Opt. Express 17, 18590 (2009).

    Article  Google Scholar 

  14. A. J. Beasley, R. Murowinski, and M. Tarenghi, The Atacama Large Millimeter/submillimeter Array (ALMA). Proc. of SPIE 6267, 2 (2006).

    Google Scholar 

  15. M. Tarenghi, Astrophys. The Atacana large millimeter/submillimeter array: overview & status. Space Sci. 313, 1 (2008).

    Article  Google Scholar 

  16. H. J. Song, and T. Nagatsuma, Present and future of terahertz communications, IEEE Trans. Terahertz Sci. Technol. 1, 256 (2011).

    Article  Google Scholar 

  17. T. Kleine-Ostmann, and T. Nagatsuma, A Review on Terahertz Communications Research. J. Infrared Millim. Terahertz Waves 32, 143 (2011).

    Article  Google Scholar 

  18. Q. Wen, H. Zhang, Y. Xie, Q. Yang, and Y. Liu, Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009).

    Article  Google Scholar 

  19. H. Tao C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, A dual band terahertz metamaterial absorber. J. Phys. D: Appl. Phys. 43, 225102 (2010).

    Article  Google Scholar 

  20. Y. Ma, Q. Chen, J. Grant, S. Saha, A. Khalid, and R. Cumming, A terahertz polarization insensitive dual band metamaterial absorber, Opt. Let. 36, 945 (2011)

    Article  Google Scholar 

  21. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation. Appl. Phys. Lett. 101, 154102 (2012).

    Article  Google Scholar 

  22. M. Lu, W. Li and E. R. Brown, Second-order bandpass THz filter achieved by multilayer complementary metamaterial structures. Opt. Let. 36, 1071 (2011).

    Article  Google Scholar 

  23. F. Lan, Z. Yang, L. Qi, X. Gao and Z. Shi, Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt. Let. 39, 1709 (2014).

    Article  Google Scholar 

  24. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett. 94, 211902 (2009).

    Article  Google Scholar 

  25. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, Polarization and angle independent terahertz metamaterials with high Q-factors, Appl. Phys. Lett. 98, 091107 (2011).

    Article  Google Scholar 

  26. J. Shu, W. Gao, and Q. Xu, Fano resonance in concentric ring apertures. Opt. Express 21, 11101 (2013).

    Article  Google Scholar 

  27. J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures. Opt. Express 22, 3747 (2014).

    Article  Google Scholar 

  28. https://www.cst.com/Products/CSTMWS

  29. B. A. Munk: Frequency Selective Surfaces: Theory and Design, 1st Edn., (John Wiley and Sons Inc., 2000) pp.5 and pp. 393

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11174280 and 61107030), the Knowledge Innovation Program of Chinese Academy of Sciences (YYYJ-1123), and the China Postdoctoral Science Foundation (2012 M520377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Li, C. Multi-Band Terahertz Filter with Independence to Polarization and Insensitivity to Incidence Angles. J Infrared Milli Terahz Waves 36, 1137–1144 (2015). https://doi.org/10.1007/s10762-015-0202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0202-4

Keywords

Navigation