Focus and Alignment Tolerance in a Photoconductive Terahertz Source

  • Gaudencio Paz-Martínez
  • Jesus Garduño-Mejía
  • Oleg V. Kolokoltsev
  • Carlos G. Treviño-Palacios
  • Naser Qureshi
Article
  • 209 Downloads

Abstract

Robust coupling between a pulsed laser beam and a photoelectric circuit is an important issue in the development of miniaturized, integrated, and embedded terahertz instrumentation. Here, we present a study of the effect of varying the focus and alignment parameters of an excitation laser pulse on the emission characteristics of a standard Hertzian-dipole type terahertz photoelectric source. The objective is to quantify the tolerance of a terahertz time-domain spectroscopy system, and we study the variation of peak amplitude, waveform, phase, and energy distribution as a function of excitation position and defocus. We find that a terahertz source can be made relatively tolerant to variations in focus, alignment, and details of the geometry of the photoelectric system, providing a window for a more robust field operation.

Keywords

Photoconductive switch Terahertz imaging Terahertz source Terahertz spectroscopy 

References

  1. 1.
    P. Uhd Jepsen, D. G. Cooke and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications”, Laser Photonics Rev. 5, No. 1, 124–166 (2011).CrossRefGoogle Scholar
  2. 2.
    D. Grischkowsky, S. Keiding, M. Van Exter, and Ch. Fattinger, “Far-infrared time- domain spectroscopy with terahertz beams of dielectrics and semiconductors”, J. Opt. Soc. Am. B 7, 2006–2015 (1990).Google Scholar
  3. 3.
    W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation”, Rep. Prog. Phys. 70 1325–1379, (2007).CrossRefMATHGoogle Scholar
  4. 4.
    K. Ishihara, K. Ohashi, T. Ikari, et al., “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett., vol. 89, 201120, (2006).CrossRefGoogle Scholar
  5. 5.
    R. Kersting, et al., “Terahertz near-field microscopy”, Advances in Solid State Physics, R. Haug, Editor. 2008, Springer-Verlag Berlin: Berlin. p. 203–222Google Scholar
  6. 6.
    A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices”, Nano Letters 8 (11), 3766–3770 (2008).CrossRefGoogle Scholar
  7. 7.
    N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range”, J Infrared Milli Terahz Waves 35:823–832 (2014).CrossRefGoogle Scholar
  8. 8.
    D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting Hertzian Dipoles”, Appl. Phys. Lett. 45 , 284 (1984). CrossRefGoogle Scholar
  9. 9.
    Fumiaki Miyamaru, Yu Saito, Kohji Yamamoto, Takashi Furuya, Seizi Nishizawa, and Masahiko Tani, “Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas”, Appl. Phys. Lett. 96, 211104 (2010).Google Scholar
  10. 10.
    Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas”, Appl. Phys. Lett., vol. 71, No. 15, pp. 2076–2078 (1997).CrossRefGoogle Scholar
  11. 11.
    C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes”, Nature Communications 4, 1622, (2013).CrossRefGoogle Scholar
  12. 12.
    N. Khiabani, Y. Huang, and Yao-chun Shen, “Discussions on the main parameters of THz photoconductive antennas as emitters”, Proceedings of the 5th European Conference on Antennas and Propagation, (2011).Google Scholar
  13. 13.
    Ian S. Gregory, Colin Baker, William R. Tribe, Ian V. Bradley, Michael J. Evans, Edmund H. Linfield, A. Giles Davies, and Mohamed Missous, “Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission”, IEEE Journal of Quantum Electronics, 41, 717, (2005).Google Scholar
  14. 14.
    M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs”, Appl. Opt. 36, 7853–7859 (1997).CrossRefGoogle Scholar
  15. 15.
    J. H. Kim, A. Polley, S. E. Ralph, “Efficient photoconductive terahertz source using line excitation”, Opt. Lett., 30, 2490 (2005).CrossRefGoogle Scholar
  16. 16.
    P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas”, J. Opt. Soc. Am. B/Vol. 13, 2424 (1996).Google Scholar
  17. 17.
    Z. Piao, M. Tani and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas”, Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 96–100.Google Scholar
  18. 18.
    D. S. Kim, D. S. Citrin, “Enhancement of terahertz radiation from photoconductors by elliptically focused excitation”, Appl. Phys. Lett., 87, 061108, (2005).CrossRefGoogle Scholar
  19. 19.
    H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa and M. Tonouchi, “Laser Terahertz Emission Microscope”, Proceedings of the IEEE 12, 1646 (2007).CrossRefGoogle Scholar
  20. 20.
    J. Van Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy”, J. Opt. Soc. Am. B, 19 (2), 319 (2002).CrossRefGoogle Scholar
  21. 21.
    S. E. Ralph, D. Grischkowsky, “Trap-enhanced electric fields in semi-insulator: The role of electrical and optical carrier injection”, Appl. Phys. Lett., 59, 1972 (1991).CrossRefGoogle Scholar
  22. 22.
    I. Brener, D. Cykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, K. West, and M.C. Nuss, “Terahertz emission from electric field singularities in biased semiconductors”, Optics Letters, 21, 1924 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gaudencio Paz-Martínez
    • 1
  • Jesus Garduño-Mejía
    • 1
  • Oleg V. Kolokoltsev
    • 1
  • Carlos G. Treviño-Palacios
    • 2
  • Naser Qureshi
    • 1
  1. 1.Centro de Ciencias Aplicadas y Desarrollo Tecnológico (CCADET)Universidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Instituto Nacional de Astrofísica, Optica y Electrónica(INAOE)TonanztintlaMexico

Personalised recommendations