Skip to main content

Advertisement

Log in

Nanosecond Microwave Semiconductor Switches for 258…266 GHz

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Optically controlled microwave switches open the way to commutate radiation frequencies up to terahertz. The switches are based on induced photoconductivity effect in semiconductors changing properties of resonant systems they are built in. The prospective applications—plasma heating, radars, particle accelerators, and spectroscopy—often require switching rapidness up to nanoseconds and coherence of output pulse packets between each other. Our waveguide semiconductor switches seem to be the most promising to satisfy these requirements. Several working switches have been built and tested for frequency range from 258 to 266 GHz at microwave power of 25 mW. The maximum possible microwave power to be switched is expected up to several watts or even higher with special heat dissipation means. The switches demonstrate nanosecond level of performance when controlled by a 10-ns green 527-nm laser with pulse energy of about 100 nJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Fumihiko, S. G. Tantawi, Phys. Rev. special topic – accelerators and beams. 062001, 5(2002).

  2. A. A. Vikharev, G. G. Denisov, VI. V. Kocharovsky, et al., Tech. Phys. Lett., 33(2007), No.9, pp. 735–737.

    Article  Google Scholar 

  3. M. Kulygin, G. Denisov, J Infrared mm THz waves (Springer), 33(2012), No.6, pp. 638–648.

  4. M. L. Kulygin, V. I. Belousov, et al., Radiophys. and Quant. Electronics, 2014, 57 (2014), No.7, pp. 509–518.

  5. L. Reggie, J.J. Lopez, C. Glaubitz, et al., J Am. Chem. Soc., 133/47 (2011) 19084–6.

    Article  Google Scholar 

  6. G. G. Denisov, A. V. Chirkov, V. I. Belousov, et al., J Infrared mm THz waves (Springer), 32(2011), No.3, pp. 343–357.

  7. O. Madelung, Semiconductors, data handbook (Springer, 2003).

  8. M. L. Kulygin, G. G. Denisov, Vl. V. Kocharovsky, J Infrared mm THz waves (Springer), 31(2010), No.1, pp. 31–40.

  9. M. L. Kulygin, Numerical investigation of three-dimensional multi-mode electrodynamic systems of electronic microwave devices using method of FDTD, Ph.D. report monograph, (IAP RAS, Nizhny Novgorod, Russia, 2006), pp. 12–47.

  10. A. Taflove, Computational electrodynamics: the finite-difference time-domain method, (Boston, MA: Artech House, 1995).

    MATH  Google Scholar 

  11. S. D. Gedney, IEEE Trans. Antennas and Propagation, 44(1996), No.12, p.1630.

    Article  Google Scholar 

  12. M. Glyavin, A. Chirkov, G. Denisov, et al., Proc. of 9th int. workshop strong microwaves: sources and sapplications, July 24–30, N.Novgorod-Perm-N.Novgorod, 2014, p.203.

  13. M.Glyavin, A.Chirkov, G.Denisov, et al., Rev. Sci. Instr., 86(2015), p.054705.

Download references

Acknowledgments

The study has been partially supported by Russian Foundation for Basic Research, Project No. 15-08-03158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Kulygin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulygin, M., Denisov, G., Vlasova, K. et al. Nanosecond Microwave Semiconductor Switches for 258…266 GHz. J Infrared Milli Terahz Waves 36, 845–855 (2015). https://doi.org/10.1007/s10762-015-0182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0182-4

Keywords

Navigation