Skip to main content
Log in

THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/\(\sqrt {Hz}\) at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/\(\sqrt {Hz}\) at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160–1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1–47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF bandwidth is not continuously covered but divided into six bands centered around 165, 330, 495, 660, 820, and 990 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. A. Maestrini, B. Thomas, H. Wang, C. Jung, J. Treuttel, Y. Jin, G. Chattopadhyay, I. Mehdi, G. Beaudin, C. R. Physique 11, 480 (2010).

  2. A. Rogalski, F. Sizov, Opto-Electronics Review 19(3), 346 (2011).

  3. H.W. Hübers, IEEE J. Sel. Top.Quant. 14, 378 (2008).

  4. G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, I. Mehdi, IEEE Trans. Microw. Theory and Tech. 52(5), 1538 (2004).

  5. A.L. Betz, Far-infrared heterodyne spectrometer for SOFIA. Tech. Rep. NASA Grant NAG 2-1062, Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO, USA (1998).

  6. P. Helisto, A. Luukanen, L. Gronberg, J. Penttila, H. Seppa, H. Sipola, C. Dietlin, E. Grossman, in European Microwave Conf. (2006), pp. 35–38.

  7. A. Luukanen, L. Grönberg, M. Grönholm, P. Lappalainen, M. Leivo, A. Rautiainen, A. Tamminen, J. Ala-Laurinaho, C.R. Dietlein, E.N. Grossman, in Proc. SPIE, Passive Millimeter-Wave Imaging Technology XIII, vol. 7670 (2010), vol. 7670, p. 767004.

  8. C.E. Tucker, P. Ade, in 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Wollongong, NSW, Australia, 2012), p. 1.

  9. F.S.S.P. Reva, A.G. Golenkov, V. Zabudsky, Journal of Infrared, Millimeter and Terahertz Waves 32, 1192 (2011).

  10. A.W.M. Lee, Q. Hu, Optics Letters 30(19), 2563 (2005).

  11. H. Sherry, J. Grzyb, Y. Zhao, R.A. Hadi, A. Cathelin, A. Kaiser, U. Pfeiffer, in IEEE Int. Solid-State Circuits Conf. (2012), pp. 252–254.

  12. E. Putley, Optical and Infrared Detectors (Springer, Berlin, 1977), chap. Thermal detectors, pp. 71–100.

  13. P. Kruse, Uncooled Thermal Imaging (SPIE Press, Bellingham, 2001).

  14. S. Hargreaves, R.A. Lewis, K. Mater. Sci: Mater. Electron. 18, 299 (2007).

  15. N. Karpowicz, H. Zhong, J.X.J.X.I. Lin, J.S. Hwang, X.C. Zhang, in Proc. SPIE, vol. 5727 (2005), vol. 5727, pp. 132–142.

  16. QMC Instruments Ltd., QAD-7 Golay detector operating manual (2005).

  17. P.L. Richards, J. Appl. Phys. 76, 1 (1994).

  18. C. Middleton, G. Zummo, A. Weeks, A. Pergande, L. Mirth, G. Boreman, in 29th Int. Conf. Infrared and Millimeter Waves (2004), pp. 745–746.

  19. E.N. Grossman, A.J. Miller, in Proc. SPIE 5077 (2003), pp. 62–70.

  20. T.L. Huang, S. Scharz, D. Rutledge, Applied Physics Letters 34, 773 (1979).

  21. U.R. Pfeiffer, E. Ojefors, in European Solid-State Circuits Conf. (IEEE, Seville, Spain, 2010), pp. 52–60.

  22. V.G. Bozhkov, Radiophys. Quantum Electr. 46, 631 (2003).

  23. J.L. Hesler, T. Crowe, in 18th Int. Symp. Space Terahertz Technology (Pasadena, CA, USA, 2007), pp. 89–92.

  24. http: //vadiodes.com/index.php?option=com_content&view=article&id=12&itemid=3.

  25. E. Brown, A. Young, J. Bjarnason, J. Zimmerman, A. Gossard, H. Kazemi, Int. J. High speed Electron. 17 pp. 383–394 (2007).

  26. J.O. Plouchart, J. Kim, J. Gross, R. Trzcinski, K. Wu, in IEEE Compound Semicond. IC Symp. (2005), pp. 121–124.

  27. A. Cathelin, J. Pekarik, in MM-Wave Silicon Technology: 60 GHz and Beyond, ed. by A. Niknejad (Springer, 2008).

  28. DOTFIVE, European seventh framework programme for research and technological development. www.dotfive.eu.

  29. DOTSEVEN, European seventh framework programme for research and technological development. www.dotseven.eu.

  30. B. Heinemann, R. Barth, D. Bolze, J. Drews, G.G. Fischer, A. Fox, O. Fursenko, T. Grabolla, U. Haak, D. Knoll, R. Kurps, M. Lisker, S. Marschmeyer, H. Rucker, D. Schmidt, J. Schmidt, M.A. Schubert, B. Tillack, C. Wipf, D. Wolansky, Y. Yamamoto, in IEEE Int. Electron Devices Meeting (2010), pp. 30.5.1–30.5.4.

  31. J. Scholvin, D. Greenberg, J. del Alamo, in IEEE Int. Electron Devices Meeting (2005), pp. 369–372.

  32. K. Statnikov, J. Grzyb, B. Heinemann, U. Pfeiffer, IEEE Trans. Microw. Theory and Tech. 63(2), 520 (2015).

  33. E. Öjefors, J. Grzyb, B. Heinemann, B. Tillack, U.R. Pfeiffer, in IEEE Int. Solid-State Circuits Conf. (2011), pp. 224–225.

  34. E. Öjefors, B. Heinemann, U.R. Pfeiffer, IEEE Trans. Microw. Theory and Tech. 59(5), 1311 (2011).

  35. U.R. Pfeiffer, Y. Zhao, J. Grzyb., R.A. Hadi, N. Sarmah, W. Förster, H. Rücker, B. Heinemann, IEEE J. Solid-State Circuits 49(12), 2938 (2014).

  36. J. Grzyb, Y.Z.R.A. Hadi, U. Pfeiffer, in 8th European Conference on Antennas and Propagation (EuCAP) (2014), pp. 850–854.

  37. J. Grzyb, Y. Zhao, U.R. Pfeiffer, IEEE Journal of Solid-State Circuits 48(7), 1751 (2013).

  38. O. Momeni, E. Afshari, IEEE J. Solid-State Circuits 46(3), 583 (2011).

  39. K. Sengupta, A. Hajimiri, IEEE J. Solid-State Circuits 47(12), 3013 (2012).

  40. E. Laskin, M. Khanpour, S.T. Nickolson, A.T.T.G.A. Cathelin, D. Belot, S.P. Voinigescu, IEEE Trans. MTT 57(12), 3477 (2009).

  41. M. Elkhouly, Y.M.M. Glisic, C. Meliani, F. Ellinger, J.C. Scheytt, in 2013 IEEE RFIC Symp. (Seattle, USA, 2013), pp. 305–308.

  42. E. Öjefors, F. Pourchon, P.C.C.R. Pfeiffer, in European Microw. Conf. (Paris, France, 2010), pp. 521–524.

  43. E. Öjefors, B. Heinemann, U. Pfeiffer, in Radio Freq. Integr. Circuits Symp. (Baltimore, MD, 2011), pp. 69–72.

  44. K. Schmalz, J. Borngr/”aber, Y. Mao, H. R/”ucker, R. Weber, IEEE Microwave and Wireless Components Letters 22(10), 533 (2012).

  45. B. Zhang, Y.Z. Xiong, L. Wang, S. Hu, L.W. Li, Electronics Letters 48(5), 257 (2012).

  46. J.D. Park, S. Kang, A.M. Niknejad, IEEE J. Solid-State Circuits 47(10), 2344 (2012).

  47. S.V. Thayagarajan, S.K.K.M. Niknejad, in 2014 IEEE RFIC Symp. (Tampa, FL, USA, 2014), pp. 357–360.

  48. J.M. Guerra, a. Siligaris, J.F. Lampin, F. Danneville, P. Vincent, in 2013 IEEE RFIC Symp. (Seattle, USA, 2013), pp. 301–304.

  49. U.R. Pfeiffer, E. Öjefors, A. Lisauskas, D. Glaab, H. Roskos, in Radio Freq. Integr. Circuits Symp. (2009), pp. 437–440.

  50. J. Grzyb, H. Sherry, Y. Zhao, R. Al Hadi, A. Cathelin, A. Kaiser, U. Pfeiffer, in SPIE 8362, Passive and Active Millimeter-Wave Imaging XV, vol. 8362 (2012), vol. 8362, pp. 1–12.

  51. J. Grzyb, R.A. Hadi, Y. Zhao, U. Pfeiffer, in 7th European Conference on Antennas and Propagation (EuCAP) (2013), pp. 1740–1744.

  52. J. Grzyb, R. Al Hadi, U. Pfeiffer, in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (2013), pp. 2265–2266. doi:10. 1109/APS.2013.6711791.

  53. J. Grzyb, K. Statnikov, U.R. Pfeiffer, in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) (TN, USA, 2014), pp. 737–738.

  54. J.D. Park, Fully integrated silicon terahertz transceivers for sensing and communication applications. Ph.D. thesis, Electrical Engineering and Computer Sciences, University of California at Berkeley (2013). http://www.eecs.berkeley.edu/ Pubs/TechRpts/2013/EECS-2013-36.html.

  55. C.A.Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989).

  56. D.M. Pozar, IEEE Trans. Antennas and Propagat. 31(5), 740 (1983).

  57. K.R. Jha, G. Singh, Terahertz Planar Antennas for Next Generation Communication (Springer, 2014).

  58. D. Filipovic, S. Gearhart, G. Rebeiz, IEEE Trans. Microw. Theory and Tech. 41(10), 1738 (1993). doi:10.1109/22.247919.

  59. J. Grzyb, U. Pfeiffer, H.S.S. Cathelin, A. Kaiser, in 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (Mainz, Germany, 2013), pp. 1–2.

  60. J. Grzyb, H. Sherry, A. Cathelin, A. Kaiser, U.R. Pfeiffer, in 37th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (Wollongong, NSW, Australia, 2012), pp. 1–3.

  61. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H.M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, IEEE J. Solid-State Circuits 47(12), 2999 (2012).

  62. A. Tomkins, P. Garcia, S. Voinigescu, IEEE J. Solid-State Circuits 45(10), 1981 (2010). doi:10.1109/JSSC.2010.2058150.

  63. L. Zhou, C.C. Wang, Z. Chen, P. Heydari, IEEE J. Solid-State Circuits 46(2), 378 (2011). doi:10.1109/JSSC.2010.2092995.

  64. L. Gilreath, V. Jain, P. Heydari, IEEE J. Solid-State Circuits 46(10), 2240 (2011). doi:10.1109/JSSC.2011.2162792.

  65. J.W. May, G.M. Rebeiz, IEEE Trans. Microw. Theory and Tech. 58(5), 1420 (2010).

  66. L. Aluigi, F. Alimenti, L. Roselli, in Microwave Workshop Series on Millimeter Wave Integration Technologies (2011), pp. 156–159. doi:10.1109/IMWS3. 2011.6061863.

  67. E. Dacquay, A. Tomkins, K. Yau, E. Laskin, P. Chevalier, A. Chantre, B. Sautreuil, S. Voinigescu, IEEE Trans. Microw. Theory and Tech. 60(3), 813 (2012). doi:10.1109/TMTT.2012.2184132.

  68. R. Han, Y. Zhang, Y. Kim, D.Y. Kim, H. Shichijo, E. Afshari, O. Kenneth, in IEEE Int. Solid-State Circuits Conf. (2012), pp. 254–256. doi:10.1109/ ISSCC.2012.6176998.

  69. U. Pfeiffer, C. Mishra, R. Rassel, S. Pinkett, S. Reynolds, IEEE Trans. Microw. Theory and Tech. 56(2), 364 (2008). doi:10.1109/TMTT.2007.914656.

  70. M. Dyakonov, M. Shur, IEEE Trans. Electron Devices 43(10), 1640 (1996). doi:10.1109/16.536809.

  71. W. Knap, V. Kochorovskii, Y. Deng, S. Rumyantsev, J.Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C. Saylor, L. Brunel, J. Appl. Phys. 91, 9346 (2002).

  72. U. Pfeiffer, E. Ojefors, in European Solid-State Circuits Conf. (2008), pp. 110–113. doi:10.1109/ESSCIRC.2008.4681804.

  73. R. Al Hadi, H. Sherry, J. Grzyb, N. Baktash, Y. Zhao, E. Öjefors, A. Kaiser, A. Cathelin, U. Pfeiffer, in IEEE MTT-S Int. Microw. Symp. Dig. (2011). doi:10.1109/MWSYM.2011.5972870.

  74. H. Sherry, R. Al Hadi, J. Grzyb, E. Öjefors, A. Cathelin, A. Kaiser, U. Pfeiffer, in Radio Freq. Integr. Circuits Symp. (2011), pp. 365–368. doi:10.1109/ RFIC.2011.5940670.

  75. F. Schuster, H. Videlier, A. Dupret, D. Coquillat, J.P.R. M. Sakowicz, M. Tchagaspanian, B. Giffard, W. Knap, in IEEE Int. Solid-State Circuits Conf. (2011), pp. 42–43.

  76. S. Boppel, A. Lisauskas, D. Seliuta, L. Minkevicius, L. Kasalynas, G. Valusis, V. Kroezer, H. Roskos, in 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF) (2012), pp. 77–80.

  77. A. Lisauskas, U.P.P. Ojefors, P. Bolivar, D. Glaab, J. App. Phys. 105(11), 114511 (2009). doi:10.1063/1.3140611.

  78. A. Lisauskas, S. Boppel, V. Krozer, H. Roskos, in Proc. IEEE Sensors Conf. (2011), pp. 55–58. doi:10.1109/ICSENS.2011.6127065.

  79. R.A. Hadi, J. Grzyb, B. Heinemann, U.R. Pfeiffer, IEEE J. Solid-State Circuits 48(9), 2002 (2013).

  80. R. Al Hadi, J. Grzyb, B. Heinemann, U. Pfeiffer, in IEEE Bipolar/BiCMOS Circuits and Tech. Meeting (2012). doi:10.1109/BCTM.2012.6352643.

  81. E. Öjefors, U. Pfeiffer, A. Lisauskas, H. Roskos, IEEE Journal of Solid-State Circuit 44(7), 1968 (2009). doi:10.1109/JSSC.2009.2021911.

  82. E.M. Azoff, Solid-State Electronics 30, 913 (1987).

  83. C.L. Gardner, Journal on Applied Mathematics 54(2), 409 (1994).

  84. R.A. Hadi, J.F. Lampin, U. Pfeiffer, in CLEO: 2014 (Optical Society of America, 2014), p. JTu4A.107.

  85. D. Filipovic, G. Gauthier, S. Raman, G. Rebeiz, IEEE Trans. Antennas Propag. 45(5), 760 (1997). doi:10.1109/8.575618.

  86. A. Danylov, Submillimeter-Wave Technology Laboratory, University of Massachusetts, THz Laboratory Measurements of Atmospheric Absorption Between 6 % and 52 % Relative Humidity. https://www.uml.edu/docs/UML_STL_WaterVaporSept2006_ tcm18-42128.pdf.

  87. J. Grzyb, K. Statnikov, R.A. Hadi, U.R. Pfeiffer, in 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (Tucson, AR, USA, 2014), pp. 1–2. 10.1109/IRMMW-THz.2014.6956429.

  88. J. Xu, X.C. Zhang, Applied Physics Letters 88(15), 151107 (2006). doi:10.1063/1.2194822.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Grzyb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzyb, J., Pfeiffer, U. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies. J Infrared Milli Terahz Waves 36, 998–1032 (2015). https://doi.org/10.1007/s10762-015-0172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0172-6

Keywords

Navigation