Skip to main content
Log in

Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 10, pp. 2438–2447, Oct. 2004.

  2. F. C. De Lucia, “Millimeter and submillimeter-wave spectroscopy,” Molecular Spectroscopy, Modern Research, Vol. II, pp. 73–92, 1976.

    Google Scholar 

  3. U. A. Khan, N. Al-Moayed, N. Nguyen, K. A. Korolev, M. N. Afsar and S. P. Naber, “Broadband dielectric characterization of tumorous and nontumorous breast tissues,” IEEE Trans. Microw. Theory Techn., vol. 55, no 12, pp. 2887–2893, December 2007.

  4. P. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. Pinder, A. Purushotham, M. Pepper, and V. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17, 12444–12454 (2009).

    Article  Google Scholar 

  5. A. Menikh, S.P. Mickan, H. Liu, R. Maccoll, and X.C. Zhang, “Label-free amplified bioaffinity detection using terahertz wave technology,” Biosens. Bioelectron, 20 (3):658–62, Oct. 15, 2004.

  6. Hai-Bo Liu, Hua Zhong, N. Karpowicz, Yunqing Chen, Xi-Cheng Zhang, “Terahertz spectroscopy and imaging for defense and security applications,” Proceedings of the IEEE , vol.95, no.8, pp.1514-1527, Aug. 2007.

  7. D. M. Mittleman, S. hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography”, Optics Letters, vol. 22, no. 12, June 15, 1997.

  8. M. Bessou, B. Chassagne, J. Caumes, C. Pradère, P. Maire, M. Tondusson, and E. Abraham, “Three-dimensional terahertz computed tomography of human bones,” Appl. Opt. 51, 6738–6744 (2012).

    Article  Google Scholar 

  9. B. Fergusson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Optics Letters, vol. 27, no. 15, August 1, 2002.

  10. A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phy. B, vol. 100, no 1, pp 151–158, July 2010.

  11. M. Jewariya, E. Abraham, T. Kitaguchi, Y. Ohgi, M. Minami, T. Araki, and T. Yasui, "Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse," Opt. Express 21, 2423–2433 (2013).

    Article  Google Scholar 

  12. Zhang Ze, R. Rajavel, P. Deelman, and P. Fay, “Sub-micron area heterojunction backward diode millimeter-wave detectors with 0.18pW/Hz1/2 noise equivalent power,” IEEE Microwave and Wireless Components Letters, vol.21, no.5, pp.267-269, May 2011.

  13. S. Munkyo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, R. Lin, D. Pukala, and M. Rodwell, “InP HBT IC technology for terahertz frequencies: fundamental oscillators up to 0.57 THz,” IEEE Journal of Solid-State Circuits, vol.46, no.10, pp.2203-2214, Oct. 2011.

  14. J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzalez, Y. Roelens, S. Bollaert, A. Cappy, and K. Karpierz, “Voltage tunable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor,” J. Appl. Phys. 97, 064307 (2005).

    Article  Google Scholar 

  15. S. Boppel, A. Lisauskas, V. Krozer, and H. G. Roskos, “Towards monolithically integrated CMOS cameras for active imaging with 600 GHz radiation,” Proc. SPIE 8261, Terahertz Technology and Applications V, 826106 (February 9, 2012)

  16. G.C. Trichopoulos, H. L. Mosbacker, D. Burdette, and K. Sertel, “A broadband focal plane array camera for real-time THz imaging applications,” IEEE Trans. Antennas and Propagation, , vol.61, no.4, pp.1733-1740, April 2013.

  17. G.C. Trichopoulos and K. Sertel, “Large format focal plane array for rapid THz computer tomography,” 2013 I.E. Int. Symposium on Antennas and Propagation, Orlando, FL USA, July 7–13, 2013.

  18. S. Wang and X-C Zhang, “Pulsed terahertz tomography,”J. Phys. D: Appl. Phys. 37 R1 (2004).

  19. A. C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” IEEE Press, 1988.

  20. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Optics Express, Vol. 19, Issue 6, pp. 5105–5117 (2011).

    Article  Google Scholar 

  21. J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, .I Manek-Hönninger, P. Desbarats, and P. Mounaix “Review of terahertz tomography techniques,” Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, Issue 4, pp 382–411, April 2014.

  22. Per Christian Hansen, Maria Saxild-Hansen, “AIR Tools — A MATLAB package of algebraic iterative reconstruction methods,” Journal of Computational and Applied Mathematics, Vol. 236, Issue 8, February 2012.

  23. D.B Rutledge, D.P. Neikirk and D.P. Kasilingram, “Integrated circuit antennas,” Infrared and Millimeter-waves, vol. 10, K.J. Button, Ed., New York: Academic Press, pp. 1–90, 1983.

    Google Scholar 

  24. G. C. Trichopoulos, G. Mumcu, K. Sertel, H. L. Mosbacker, and P. Smith, “A novel approach for improving off-axis pixel performance of terahertz focal plane arrays,” IEEE Trans. Microw. Theory Techn. , vol.58, no.7, pp.2014-2021, July 2010.

  25. National Instruments, http://www.ni.com/labview, Accesed Jan 2015.

  26. Lipson, Lipson and Tannhauser (1998). Optical Physics, pp. 340.

  27. FEKO, EM Software & Systems-S.A.

  28. TPS Spectra 3000, Teraview Ltd., http://www.teraview.com/products/terahertz-pulsed-spectra-3000/, Accesed Jan 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios C. Trichopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trichopoulos, G.C., Sertel, K. Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera. J Infrared Milli Terahz Waves 36, 675–686 (2015). https://doi.org/10.1007/s10762-015-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0144-x

Keywords

Navigation