Skip to main content
Log in

Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. ITU-R WP5D, http://www.itu.int/ITU-R/.

  2. IEEE802.11ac Very High Throughput < 6 GHz Task Group.

  3. IEEE802.11ad Very High Throughput 60 GHz Task Group.

  4. C. Jastrow, K. Munter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz Transmision System,” Electron. Lett., vol. 44, pp. 213–214 (2008).

  5. H.-J. Song and T. Nagatsuma, “Present and Future of Terahertz Communications,” IEEE Trans. Terahertz Sci. Tech., vol. 1, no. 1, pp. 256–263 (2011).

  6. T. Kürner and S. Priebe, “Towards THz Communications - Status in Research, Standardization and Regulation,” J. Infrared Millimeter Terahertz waves, vol. 35, no. 1, pp. 53–62 (2013).

  7. IEEE P802.15 WPAN Study Group 3d 100 Gbit/s Wireless (SG 3d (100G)).

  8. Recommendation ITU-R P.676-5, “Attenuation of atmospheric gases,” 2001.

  9. H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transfer, vol. 109, no. 12–13, pp. 2303–2314 (2008).

  10. A. Tessmann, A. Leuther, V. Hurm, H. Massler, M. Zink, M. Kuri, M. Riessle, R. Losch, M. Schlechtweg and O. Ambacher, “A 300 GHz mHEMT amplifier module,” in Proc. IEEE Intl. Conf. Indium Phosphide Rel. Material, pp. 196–199 (2009).

  11. M. Seo, M. Urteaga, J. Hacker, A. Young, Z. Griffith, V. Jain, R. Pierson, P. Rowell, A. Skalare, A. Peralta, R. Lin, D. Pukala and M. Rodwell, “InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz,” IEEE J. Soild-State Circ., vol. 46, no. 10, pp. 2203–2214 (2011).

  12. W. Deal, X. B. Mei, K. M. K. H. Leong, V. Radisic, S. Sarkozy and R. Lai, “THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors,” IEEE Trans. Terahertz Sci. Tech., vol. 1, no. 1, pp. 25–32 (2011).

  13. Y. M. Tousi, O. Momeni and E. Afshari, “A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation,” IEEE J. Solid-State Circ., vol. 47, no. 12, pp. 3032–3042 (2012).

  14. S. Pinel, P. Sen, S. Sarkar, B. Perumana, D. Dawn, D. Yeh, F. Barale, M. Leung, E. Juntunen, P. Vadivelu, K. Chuang, P. Melet, G. Iyer and J.Laskar, “60GHz single-chip CMOS digital radios and phased array solutions for gaming and connectivity,” IEEE J. Sel. Area Commun., vol. 27, no. 8, pp. 1347–1357 (2009).

  15. R. C. Daniels, J. N. Murdock, T. S. Rappaport, R. W. Heath, “60 GHz Wireless: Up Close and Personal,” IEEE Microw. Mag., vol. 11, no. 7, pp. 44–50 (2010).

  16. Ed. I. Kaminow, T. Li and A. E. Willner , “Optical Fiber Telecommunications V1B, Fifth Edition: Systems and Networks (Optics and Photonics),” Academic Press, (2008).

  17. Ed. M. Nakazawa, K. Kikuchi and T. Miyazaki “High Spectral Density Optical Communication Technologies,” pp. 11–48, Springer (2010).

  18. Optical Internetworking Forum, “100G Ultra Long Haul DWDM Framework Document,” OIF-FD-100G-DWDM-01.0, Jun. 2009.

  19. M. Birk, P. Gerard , R. Curto , L. E. Nelson , X. Zhou , P. Magill , T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri , “Real-Time Single-Carrier Coherent 100 Gb/s PM-QPSK Field Trial,” J. Lightw. Technol., vol. 29, no. 4, pp. 417–425 (2011).

  20. H. Al-Raweshidy and S. Komaki, “Radio Over Fiber Technologies for Mobile Communications Networks,” Aetech House (2002).

  21. A. J. Seeds and K. J. Williams, “Microwave Photonics,” IEEE J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641 (2006).

  22. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photonics, vol. 1, pp. 319–330 (2007).

  23. H.-J. Song, K. Ajito, A. Wakatsuki, Y. Muramoto, N. Kukutsu, Y. Kado, and T. Nagatsuma, “Terahertz Wireless Communication Link at 300 GHz,” IEEE Intl. Topic. Meeting Microw. Photon. (MWP2010), WE3-2, (Montreal, Oct. 2010).

  24. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless llink in the W-band (75–110 GHz),” Optics Express 19, 24994–24949 (2011).

  25. A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Optical and millimeter-wave radio seamless MIMO transmission based on radio over fiber technology,” Optics Express, vol. 20, no. 28, pp. 29395–29403 (2012).

  26. S. Koenig, F. Boes, D. Lopez-Diaz, J. Antes,R. Henneberger, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, I. Kallfass, and J. Leuthold, “100 Gbit/s Wireless Link with mm-Wave Photonics,” Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference, Anaheim, USA, PDP5B.4, Mar. 2013.

  27. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nature Photonics, vol. 7, pp. 977–981 (2013).

  28. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li and G. K. Chang, “Multichannel 120 Gb/s data transmission over 2 × 2 MIMO fiber-wireless link at W-band,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 780–783 (2013).

  29. S. Horiguchi, K. Arakawa, Y. Minamikata and T. Nagatsuma, “Error-free 30–50 Gbps Wireless Transmission at 300 GHz,” in Proc. 2013 Asia-Pacific Microw. Conf., pp. 660–662 (2013).

  30. T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques,” IEEE Intl. Topic. Meeting Microw. Photon. (MWP2006), Grenoble, France, W3-3, Oct. 2006.

  31. A. Kanno, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Carrier frequency offset compensation for 10-Gbaud QPSK RoF transmission at 90 GHz with free-running optical LO signal,” Tech Dig. IEEE MTT-S Intl. Microw. Symp., Montreal, Canada, TH3E-4, Jun. 2012.

  32. A. Kanno and T. Kawanishi, “Frequency-stabilized radio-over-fiber signal generation based on optical frequency comb source with injection-locking technique,” Tech. Dig. IEEE MTT-S Intl. Micorow. Symp., Seattle, USA, WE2H-5, Jun. 2013.

  33. A. Kanno, I. Morohashi, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “16-Gbaud QPSK Radio Transmission Using Optical Frequency Comb with Recirculating Frequency Shifter for 300-GHz RoF Signal,” IEEE Intl. Topic. Meet. Microw. Photon., Noordwijk, Netherland, S7.6, Sep. 2012.

  34. A. Kanno, T. Kuri, I. Morohashi, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama “Coherent MMW/Terahertz Signal Transmission with Frequency-Reconfigurable RoF Transmitter Based on an Optical Frequency Comb,” IEEE GLOBECOM, Atlanta, USA, SA-ANS1-4, Dec. 2013.

  35. N. Sekine, A. Kanno, T. Kuri, I. Morohashi, A. Kasamatsu, I. Hosako, T. Kawanishi, Y. Yoshida and K. Kitayama, “30-Gbps-class terahertz transmission using optical sub-harmonic IQ mixer for backhaul/fronthaul directly connected to optical networks,” doc.: IEEE 802.15-13-0653-00-0thz, Nov. 2013.

  36. A. Kanno, T. Kuri, I. Morohashi, A. Kasamatsu, N. Sekine, I. Hosako, T. Kawanishi, Y. Yoshida and K. Kitayama, “Application of RoF-Based Terahertz Fronthauling using Optical Sub-Harmonic IQ Mixer to Mobile/Wireless Access Systems,” doc.: IEEE 802.15-14-0022-00-0thz, Feb. 2012.

  37. N. Nakajima, R. Kohno, and S. Kubota, “Research and Developments of Software-Defined Radio Technologies in Japan,” IEEE Commun. Mag., vol. 39, no. 8, pp. 146–155 (2001).

  38. S. Y. Wang and D. M. Bloom, “100 GHz bandwidth planar GaAs Schottky photodiode,” Electron. Lett., vol. 19, no. 14, pp. 554–555 (1983).

  39. K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma, M. Yaita, “110-GHz, 50 %-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55 μm wavelength,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 719–721 (1994).

  40. Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightw. Technol., vol. 13, no. 7, pp. 1490–1499 (1995).

  41. T. Ishibashi and H. Ito, “Uni-traveling-carrier photodiodes,” Tech. Dig. Ultrafast Electron. Optoelectronics, Lake Tahoe, USA, pp.83–87 (1997).

  42. H. Ito, T. Furuta, S. Kodama, T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett., vol. 36, no. 21, pp. 1809–1810 (2000).

  43. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiode,”. Semicond. Sci. Technol., vol. 20, no. 7, pp. S191–S198 (2005).

  44. T. Kawanish, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express, vol. 1, no. 8, pp. 217–221 (2004).

  45. A. Kanno, T. Sakamoto, and T. Kawanishi, “Highly stabilized frequency-locked optical frequency comb signal generation using amplified optical fiber loop with SSB-SC modulation,” Conf. Lasers Electrooptic., Baltimore, USA, JWA85, May. 2011.

  46. A. Kanno, and T. Kawanishi, “Phase noise analysis of an optical frequency comb using single side-band suppressed carrier modulation in an amplified optical fiber loop,” IEICE Electron. Express, vol. 9, no. 18, pp. 1473–1478 (2012).

  47. T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-Speed Control of Lightwave Amplitude, Phase, and Frequency by Use of Electrooptic Effect,” J. Sel. Top. Quantum Electron., vol. 13, pp. 79–91 (2007).

  48. K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, and A. Matsuzawa, “A 60-GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE802.15.3c,” IEEE J. Solid-State Circ., vol. 14, no.12, pp. 2988–3004 (2011).

  49. ITU.R Rep. M.2135-1, “Guidelines for evaluation of radio interface technologies for IMT-Advanced,” Aug. 2009.

  50. M. Davis and A. Makleff, “Innovations and New Techniques for 4G Mobile Backhaul,” Mobile Backhaul Conf. at Intl. Cellular Telecommun. Internet Assoc. (CTIA) Wireless 2012, New Orleans, USA, May 2012.

  51. “NEC Launches Enhanced iPASOLINK EX Radio Supporting Ultra High Speed Cloud RAN Fronthaul,” in http://www.nec.com/en/press/201402/global_20140213_03.html, Feb. 13, 2014.

  52. ITU-T G.975.1, “Forward Error Correction for High Bit Rate DWDM Submarine Systems,” Feb. 2004.

  53. H.T. Friis, “A Note On a Simple Transmission Formula,” Proc. IRE, vol. 34, pp. 254–256 (1946).

  54. D. Pukala, L. Samoska, T. Gaier, A. Fung, X. B. Mei, W. Yoshida, J. Lee, J. Uyeda, P. H. Liu, W. R. Deal, V. Radisic, and R. Lai, “Submillimeter-Wave InP MMIC Amplifiers From 300–345 GHz,” IEEE Microw. Wireless Components Lett., vol. 18, no. 1, pp. 61–63 (2008).

  55. A. Baig, D. Gamzina, M. Johnson, C. W. Domier, A. Spear, L. R. Barnett, N. C. Luhmann and Y.-M. Shin, “Experimental characterization of LIGA fabricated 0.22 THz TWT circuits,” in Proc. IEEE Intl. Vacuum Electron. Conf., pp. 275–276 (2011).

  56. J. C. Tucek, M. A. Basten, D. A. Gallagher and K. E. Kreischer, “220 GHz power amplifier development at Northrop Grumman,” in Proc. IEEE Intl. Vacuum Electron. Conf., pp. 553–554 (2012).

  57. M. A. Basten, J. C. Tucek, D. A. Gallagher, K. E. Kreischer, and R. Mihailovich, “A 0.85 THz vacuum-based power amplifier,” in Proc. IEEE Intl. Vacuum Electron. Conf., pp. 39–40 (2012).

Download references

Acknowledgments

The authors would like to thank Dr. Katsumi Fujii and Dr. Hidetoshi Tosaka for help in using the large-scale anechoic chamber at the National Institute of Information and Communications Technology (NICT), Japan.

This work is conducted as a part of the project “R&D on amplifier technology in 300GHz band, in a part of R&D program on key technology in terahertz frequency bands”, funded by the Ministry of Internal Affairs and Communications, Japan.

Y. Yoshida and K. Kitayama are thankful for the financial support received from the “Agile Deployment Capability of Highly Resilient Optical and Radio Seamless Communication Systems” program of the commissioned research of the NICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kanno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, A., Kuri, T., Morohashi, I. et al. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology. J Infrared Milli Terahz Waves 36, 180–197 (2015). https://doi.org/10.1007/s10762-014-0132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0132-6

Keywords

Navigation