Skip to main content
Log in

THz Magneto-Photoresponse Spectroscopy of Two-Dimensional Electrons in an InAs/InGaAs/InAlAs Inserted-Channel

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We have used THz magneto-photoresponse/transmission to measure various electronic parameters of a two-dimensional electron gas (2DEG) located primarily within an InAs inserted-channel and the surrounding InGaAs well in an asymmetric InAs/InGaAs/InAlAs inserted-well heterostructure in magnetic fields up to 10 T. We have developed an analytical approach to the photoresponse based on resonant heating of the 2DEG by cyclotron resonance (CR) absorption. The analysis incorporates a resonant T-profile mimicking the CR absorption, combined with the theoretical expression for quantized resistance oscillations of a 2DEG. Fitting of an individual set of PR data vs. magnetic field can in principle, provide g-factor, cyclotron effective mass, SdH scattering time, CR scattering time and carrier density of the 2DEs. This is a temperature differential technique, which leads to enhanced sensitivity to harmonic content of the Shubnikov-deHaas (S-dH) oscillations and thus to clearer spin-splitting of the Landau levels at lower fields than is possible in direct S-dH measurements at the same bath temperature. Results show an enhanced g-factor for electrons and large g-factor anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tatsushi Akazaki, Kunihiko Arai, Takatomo Enoki and Yasunobu Ishii, IEEE electron device letter 13, 325 (1992)

    Article  Google Scholar 

  2. Hideaki Matsuzaki, Takashi Maruyama, Toshihiko Koasugi, Hiroyuki Takahashi, Masami Tokumitsu and Takatomo Enoki, IEEE Transactions on electron devices 54, 378 (2007)

    Article  Google Scholar 

  3. A.Richter, M.Koch, T. Matsuyama,C. Heyn and U. Merket, Appl. Phys. Lett. 77, 3227 (2000)

  4. P. Debray, S.M.S Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad and M. Johnson, Nature Nanotechnology 4, 759-764 (2009)

  5. S.S. Krishtopenko, I.I Gavrilenko and M. Goiran, Phys. Rev. B 87, 155113 (2013)

    Article  Google Scholar 

  6. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum and H. Shtrikman, Nature Physics 8, 887 (2012)

    Article  Google Scholar 

  7. A. D. Finck, D. J van Harlingen, P. K. Mohseni, K. Jung and X. Li, Phys. Rev. Lett. 110, 126406 (2013)

    Article  Google Scholar 

  8. W. Kohn, Phys. Rev. 123, 1242 (1961)

    Article  MATH  Google Scholar 

  9. M. Califano, T. Chakraborty, Pekka Pietilainen and C._M. Hu, Phys. Rev. B 76, 113315 (2006)

  10. E. L. Ivchenko, A. A Kiselev and M. Willander, Solid State Commun. 102, 375 (1997)

    Article  Google Scholar 

  11. A. A Kiselev, E. L. Ivchenko and U. Rossler, Phys. Rev. B 58, 16535 (1998)

    Article  Google Scholar 

  12. F. Fang and P. Stiles, Phys. Rev. 174, 823 (1968)

    Article  Google Scholar 

  13. Y.G Sadofyev, A. Ramamoorthy, B. Naser, J. P. Bird, S. R. Johnson and Y. H. Zhang, Appl. Phys. Lett. 81, 1833 (2002)

    Article  Google Scholar 

  14. S. Brosing, K. Ensslin, A. G. Jansen, C. Nguyen, B. Brar, M. Thomas and H. Kroemer, Phys. Rev. B 61, 13045 (2000)

    Article  Google Scholar 

  15. B. D. McCombe and R. J. Wagner, Advances in electronics and electron physics, (Academic Press, Volume 37, New York, 1975), P.31

  16. A. Stephens, R. Miller, J. Sybert and D. Seiler, Phys. Rev. B 18, 4394 (1976)

    Article  Google Scholar 

  17. M. Pakmehr et al, IOP Journal of Physics: Conf.Ser. 456, 012031 (2013)

  18. M. J. Yang, P. J. Lin-Chung, B. V. Shanabrook, J. R. Waterman, R. J. Wagner, and W. J. Moore, Phys. Rev. B(R) 47, 1691 (1993)

    Article  Google Scholar 

  19. J. Kono, S. T. Lee, M. S. Salib, G. S. Herold, A. Petrou, and B. D. McCombe, Phys. Rev. B 52, 8654 (1997)

    Article  Google Scholar 

  20. A. Isihara and L. Smrcka, J. Phys. C:Solid State Phys 19, 6777 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

MP and BDM thank J. Wolf for technical assistance in maintaining a supply of liquid helium under difficult circumstances. The work at UB was supported by the National Science Foundation under Materials World Network grant DMR 1008138 and by the Office of the Provost at UB, at the Humboldt-Universität zu Berlin by DFG-MWN grant PAK 556 FI932/4-1, and at the Hamburg University via BMBF, project 01DJ12099 “Era.Net.Rus: SpinBar”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Pakmehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakmehr, M., Khaetskii, A., McCombe, B.D. et al. THz Magneto-Photoresponse Spectroscopy of Two-Dimensional Electrons in an InAs/InGaAs/InAlAs Inserted-Channel. J Infrared Milli Terahz Waves 36, 291–297 (2015). https://doi.org/10.1007/s10762-014-0126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0126-4

Keywords

Navigation