Simulation of Terahertz Generation from Lateral Diffusion Currents in Semiconductor Devices

Abstract

In this paper we model the carrier dynamics and resulting THz emission from lateral diffusion currents within a semiconductor device which has been partially masked by a metallic mask. We present a numerical 1D model and a 1D Monte Carlo simulation which both demonstrate that regardless of the excitation laser spot shape we do not expect to see measurable THz emission in the direction of the optical pump propagation from lateral diffusion currents. Experimentally such devices do produce strong THz emission. We analytically investigate the role of the metal mask and we found that it suppresses the emission of dipoles that are in a region that is less than a wavelength away from the interface. The results from the numerical model are also included in a finite element analysis model of the geometry which predicts THz emission if and only if the metal mask is present.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M.B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, Optics Express 18 (2010), no. 5, 4939.

  2. 2.

    M.E. Barnes, D. Mcbryde, G.J. Daniell, G. Whitworth, A.H. Quarterman, K.G. Wilcox, A. Brewer, H.E. Beere, D.A. Ritchie, and V. Apostolopoulos, Optics Express 20 (2012), no. 8, 1.

  3. 3.

    M.E. Barnes, S.A. Berry, P. Gow, D. McBryde, G.J. Daniell, H.E. Beere, D.A. Ritchie, and V. Apostolopoulos, Optics express 21 (2013), no. 14, 16263.

  4. 4.

    P. Gow, S.A. Berry, D. McBryde, M.E. Barnes, H.E. Beere, D.A. Ritchie, and V. Apostolopoulos, Applied Physics Letters 103 (2013), no. 25, 252101.

  5. 5.

    D. McBryde, P. Gow, S.A. Berry, M.E. Barnes, A. Aghajani, and V. Apostolopoulos, Applied Physics Letters 104 (2014), 201108.

  6. 6.

    D. Cortie and R. Lewis, Physical Review B 84 (2011), no. 15, 1.

  7. 7.

    M.B. Johnston, D. Whittaker, A. Corchia, A.G. Davies, and E. Linfield, Physical Review B 65 (2002), no. 16, 165301.

  8. 8.

    K. Drexhage, Journal of Luminescence 1-2 (1970), 693.

  9. 9.

    A. Sommerfeld, Mathematische Annalen 47 (1896), 317.

  10. 10.

    K. Liu, J.Z. Xu, T. Yuan, and X.C. Zhang, Physical Review B 73 (2006), no. 15, 155330.

  11. 11.

    T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Physical Review B, Condensed matter 47 (1993), no. 7, 3842.

  12. 12.

    W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, 2nd edn, Cambridge University Press, 1999.

  13. 13.

    I.S. Gregory, W.R. Tribe, C. Baker, B.E. Cole, M.J. Evans, L. Spencer, M. Pepper, and M. Missous, Applied Physics Letters 86 (2005), no. 20, 204104.

  14. 14.

    I.S. Gregory, PhD Thesis, University of Cambridge, 2004.

  15. 15.

    C. Baker, PhD Thesis, University of Cambridge, 2004.

  16. 16.

    E.R. Brown, International Journal of High Speed Electronics and Systems 13 (2003), no. 02, 497– 545.

  17. 17.

    G. Rodriguez, S.R. Caceres, and A.J. Taylor, Optics Letters 19 (1994), no. 23, 1994–1996.

  18. 18.

    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer-Verlag, New York, 1989.

  19. 19.

    C. Jacoboni and L. Reggiani, Reviews Of Modern Physics 55 (1983), no. 3, 645.

  20. 20.

    E. Castro-Camus, J. Lloyd-Hughes, and M.B. Johnston, Vol. 71, 2005.

  21. 21.

    E. Castro-Camus, M.B. Johnston, and J. Lloyd-Hughes, Semiconductor Science and Technology 27 (2012), no. 11, 115011.

  22. 22.

    D.L. Cortie and R.a. Lewis, Applied Physics Letters 100 (2012), no. 26, 261601.

  23. 23.

    A. Reklaitis, Journal of Applied Physics 108 (2010), no. 5, 053102.

  24. 24.

    A. Reklaitis, Journal of Applied Physics 109 (2011), no. 8, 083108.

  25. 25.

    J. Lloyd-Hughes, E. Castro-Camus, M.D. Fraser, C. Jagadish, and M.B. Johnston, Physical Review B 70 (2004), 235330.

  26. 26.

    J. Lloyd-Hughes, S.K.E. Merchant, L. Fu, H.H. Tan, C. Jagadish, E. Castro-Camus, and M.B. Johnston, Applied physics letters 89 (2006), 232102.

  27. 27.

    T. Kuhn and F. Rossi, Physical Review B 46 (1992), no. 12.

  28. 28.

    D. Vasileska, K. Raleva, and S.M. Goodnick, Applications of Monte Carlo Method in Science and Engineering, 2011. InTech.

  29. 29.

    T. Doi, K. Toyoda, and Y. Tanimura, Applied Optics 36 (1997), no. 28, 7157.

  30. 30.

    H. Yasuda and I. Hosako, Japanese Journal of Applied Physics 47 (2008), no. 3, 1632.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark E. Barnes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnes, M.E., Daniell, G.J., Gow, P. et al. Simulation of Terahertz Generation from Lateral Diffusion Currents in Semiconductor Devices. J Infrared Milli Terahz Waves 35, 1030–1044 (2014). https://doi.org/10.1007/s10762-014-0111-y

Download citation

Keywords

  • Terahertz sources
  • Carrier dynamics
  • Photo-Dember
  • Semiconductor device modeling