Simulation of Terahertz Generation from Lateral Diffusion Currents in Semiconductor Devices

  • Mark E. Barnes
  • Geoff J. Daniell
  • Paul Gow
  • Vasilis Apostolopoulos
Article

Abstract

In this paper we model the carrier dynamics and resulting THz emission from lateral diffusion currents within a semiconductor device which has been partially masked by a metallic mask. We present a numerical 1D model and a 1D Monte Carlo simulation which both demonstrate that regardless of the excitation laser spot shape we do not expect to see measurable THz emission in the direction of the optical pump propagation from lateral diffusion currents. Experimentally such devices do produce strong THz emission. We analytically investigate the role of the metal mask and we found that it suppresses the emission of dipoles that are in a region that is less than a wavelength away from the interface. The results from the numerical model are also included in a finite element analysis model of the geometry which predicts THz emission if and only if the metal mask is present.

Keywords

Terahertz sources Carrier dynamics Photo-Dember Semiconductor device modeling 

References

  1. 1.
    G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M.B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, Optics Express 18 (2010), no. 5, 4939.Google Scholar
  2. 2.
    M.E. Barnes, D. Mcbryde, G.J. Daniell, G. Whitworth, A.H. Quarterman, K.G. Wilcox, A. Brewer, H.E. Beere, D.A. Ritchie, and V. Apostolopoulos, Optics Express 20 (2012), no. 8, 1.Google Scholar
  3. 3.
    M.E. Barnes, S.A. Berry, P. Gow, D. McBryde, G.J. Daniell, H.E. Beere, D.A. Ritchie, and V. Apostolopoulos, Optics express 21 (2013), no. 14, 16263.Google Scholar
  4. 4.
    P. Gow, S.A. Berry, D. McBryde, M.E. Barnes, H.E. Beere, D.A. Ritchie, and V. Apostolopoulos, Applied Physics Letters 103 (2013), no. 25, 252101.Google Scholar
  5. 5.
    D. McBryde, P. Gow, S.A. Berry, M.E. Barnes, A. Aghajani, and V. Apostolopoulos, Applied Physics Letters 104 (2014), 201108.Google Scholar
  6. 6.
    D. Cortie and R. Lewis, Physical Review B 84 (2011), no. 15, 1.Google Scholar
  7. 7.
    M.B. Johnston, D. Whittaker, A. Corchia, A.G. Davies, and E. Linfield, Physical Review B 65 (2002), no. 16, 165301.Google Scholar
  8. 8.
    K. Drexhage, Journal of Luminescence 1-2 (1970), 693.Google Scholar
  9. 9.
    A. Sommerfeld, Mathematische Annalen 47 (1896), 317.Google Scholar
  10. 10.
    K. Liu, J.Z. Xu, T. Yuan, and X.C. Zhang, Physical Review B 73 (2006), no. 15, 155330.Google Scholar
  11. 11.
    T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Physical Review B, Condensed matter 47 (1993), no. 7, 3842.Google Scholar
  12. 12.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, 2nd edn, Cambridge University Press, 1999.Google Scholar
  13. 13.
    I.S. Gregory, W.R. Tribe, C. Baker, B.E. Cole, M.J. Evans, L. Spencer, M. Pepper, and M. Missous, Applied Physics Letters 86 (2005), no. 20, 204104.Google Scholar
  14. 14.
    I.S. Gregory, PhD Thesis, University of Cambridge, 2004.Google Scholar
  15. 15.
    C. Baker, PhD Thesis, University of Cambridge, 2004.Google Scholar
  16. 16.
    E.R. Brown, International Journal of High Speed Electronics and Systems 13 (2003), no. 02, 497– 545.Google Scholar
  17. 17.
    G. Rodriguez, S.R. Caceres, and A.J. Taylor, Optics Letters 19 (1994), no. 23, 1994–1996.Google Scholar
  18. 18.
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer-Verlag, New York, 1989.Google Scholar
  19. 19.
    C. Jacoboni and L. Reggiani, Reviews Of Modern Physics 55 (1983), no. 3, 645.Google Scholar
  20. 20.
    E. Castro-Camus, J. Lloyd-Hughes, and M.B. Johnston, Vol. 71, 2005.Google Scholar
  21. 21.
    E. Castro-Camus, M.B. Johnston, and J. Lloyd-Hughes, Semiconductor Science and Technology 27 (2012), no. 11, 115011.Google Scholar
  22. 22.
    D.L. Cortie and R.a. Lewis, Applied Physics Letters 100 (2012), no. 26, 261601.Google Scholar
  23. 23.
    A. Reklaitis, Journal of Applied Physics 108 (2010), no. 5, 053102.Google Scholar
  24. 24.
    A. Reklaitis, Journal of Applied Physics 109 (2011), no. 8, 083108.Google Scholar
  25. 25.
    J. Lloyd-Hughes, E. Castro-Camus, M.D. Fraser, C. Jagadish, and M.B. Johnston, Physical Review B 70 (2004), 235330.Google Scholar
  26. 26.
    J. Lloyd-Hughes, S.K.E. Merchant, L. Fu, H.H. Tan, C. Jagadish, E. Castro-Camus, and M.B. Johnston, Applied physics letters 89 (2006), 232102.Google Scholar
  27. 27.
    T. Kuhn and F. Rossi, Physical Review B 46 (1992), no. 12.Google Scholar
  28. 28.
    D. Vasileska, K. Raleva, and S.M. Goodnick, Applications of Monte Carlo Method in Science and Engineering, 2011. InTech.Google Scholar
  29. 29.
    T. Doi, K. Toyoda, and Y. Tanimura, Applied Optics 36 (1997), no. 28, 7157.Google Scholar
  30. 30.
    H. Yasuda and I. Hosako, Japanese Journal of Applied Physics 47 (2008), no. 3, 1632.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mark E. Barnes
    • 1
  • Geoff J. Daniell
    • 1
  • Paul Gow
    • 1
  • Vasilis Apostolopoulos
    • 1
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations