Skip to main content
Log in

Characterizing the beam properties of terahertz quantum-cascade lasers

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz quantum-cascade lasers (QCLs) are very promising radiation sources for many scientific and commercial applications. Shaping and characterizing the beam profile of a QCL is crucial for any of these applications. Usually the beam profile should be as close as possible to a fundamental Gaussian TEM00 mode. In order to completely characterize the laser beam the power and the wavefront have to be measured. We describe methods for characterizing the beam properties of QCLs. Several QCLs with single-plasmon waveguide and emission frequencies between 2 and 5 THz are investigated. The beam profiles of these lasers are shaped into almost fundamental Gaussian modes using dedicated lenses. The beam propagation factor M2 is as low as 1.2. The wavefront is measured along the axis of propagation with a THz Hartmann sensor. Its curvature behaves as expected for a Gaussian beam. The applied methods can be transferred to any other THz beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Bründermann, H.-W. Hübers, and M. F. Kimmitt, Terahertz Techniques, ISBN 978-3-642-02591-4 (Springer, Berlin, 2012).

  2. K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonomaki (edts.), Terahertz Spectroscopy and Imaging, ISBN 978-3-642-29564-5 (Springer, Berlin, 2013)

  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).

    Article  Google Scholar 

  4. B. S. Williams, Nature Photonics 1, 517 (2007).

    Article  Google Scholar 

  5. C. Sirtori, S. Barbieri, and R. Colombelli, Nature Photonics 7, 691 (2013).

    Article  Google Scholar 

  6. J. Faist, Quantum Cascade Lasers, ISBN 978–0198528241 (Oxford University Press, USA, 2013).

  7. D. Turcinkova, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, Appl. Phys. Lett. 99, 191104 (2011).

    Article  Google Scholar 

  8. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest,C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nature Photonics 5, 306 (2011).

    Article  Google Scholar 

  9. M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 103, 171113 (2013).

    Article  Google Scholar 

  10. M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, and H. T. Grahn, Opt. Express 20, 11207 (2012).

    Article  Google Scholar 

  11. M. S. Vitiello, L. Consolino, S. Bartalani, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, Nature Photonics 6, 525 (2012).

    Article  Google Scholar 

  12. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nature Photonics 3, 732 (2009).

    Article  Google Scholar 

  13. A.W.M. Lee, Q. Qin, S. Kumar, B.S.Williams, Q. Hu, and J.L. Reno, Applied Phys. Lett. 89, 141125 (2006).

  14. N. Oda, T. Ishi, T. Morimoto, T. Sudou, H. Tabata, S. Kawabe, K. Fukuda, A. W. M. Lee, and Q. Hu, Proc. SPIE, vol. 8496, 84960Q-1 (2012).

    Article  Google Scholar 

  15. N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, IEEE Trans. Terahertz Science and Technol. 3, 617 (2013).

    Article  Google Scholar 

  16. H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, J Infrared Milli. Terahz. Waves 34, 325 (2013).

    Article  Google Scholar 

  17. L. Schrottke, M. Wienold, R. Sharma, X. Lü, K. Biermann, R. Hey, A. Tahraoui, H. Richter, H.-W. Hübers, and H. T. Grahn, Semicond. Sci. Technol. 28, 035011 (2013).

    Article  Google Scholar 

  18. L. Consolino, S. Bartalini, H. Beere , D. A. Ritchie, M. S. Vitiello, and P. De Natale, Sensors 13, 3331 (2013).

    Article  Google Scholar 

  19. R. Eichholz, H. Richter, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, Opt. Express 21, 31299 (2013).

    Article  Google Scholar 

  20. H.-W. Hübers, S.G. Pavlov, A.D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie, and E.H. Linfield, Opt. Express 13, 5890 (2005).

    Article  Google Scholar 

  21. E. Bründermann, M. Havenith, G. Scalari, M. Giovannini, J. Faist, J. Kunsch, L. Mechold, and M. Abraham, Opt. Express 14, 1829 (2006).

    Article  Google Scholar 

  22. A.J.L. Adam, I. Kasalynas, J.N. Hovenier, T.O. Klaassen, J.R. Gao, E.E. Orlova, B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, Appl. Phys. Lett. 88, 151105 (2006).

    Article  Google Scholar 

  23. S. Kumar, B.S. Williams, Q. Qin, A.W. Lee, Q. Hu, and J.L. Reno, Opt. Express 15, 113 (2007).

    Article  Google Scholar 

  24. G. Sevin, D. Fowler, G. Xu, F. H. Julien, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, Appl. Phys. Lett. 97, 131101 (2010).

    Article  Google Scholar 

  25. M.L. Wei, Q.Q. Alan, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno, Opt. Lett. 32, 2840 (2007)

    Article  Google Scholar 

  26. M.I. Amanti, M. Fisher, C.Walther, G. Scalari, and J. Faist, Electron. Lett. 43(10), 573 (2007).

  27. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. R. Neal, W. E. Nixon, M. C. Wanke, and J. L. Reno, Appl. Optics 46, 5051 (2007).

    Article  Google Scholar 

  28. J. Hartmann, Z. Instrumentenk. 20, 47 (1900).

    Google Scholar 

  29. B. Platt and R. V. Shack, Opt. Sci. Center Newsl. 5, 15 (1971).

    Google Scholar 

  30. L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, Metrologia 46, S160 (2009).

    Article  Google Scholar 

  31. A. Steiger, M. Kehrt, C. Monte, and R. Müller, Opt. Express 21, 14466 (2013).

    Article  Google Scholar 

  32. R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, Ch. Monte, and A. Steiger, J Infrared Milli. Terahz. Waves, April 2014, doi:10.1007/s10762-014-0066-z

  33. TK Instruments Ltd., United Kingdom, available at www.terahertz.co.uk

  34. Infratec GmbH, Germany, available at www.infratec.de

  35. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, Opt. Express 18, 10177 (2010).

    Article  Google Scholar 

  36. International Organization for Standardization, document no. ISO 11146, Lasers and laser-related equipment – Test methods for laser beam parameters – Beam width, divergence, angle and beam propagation factor (1999).

  37. A. E. Siegman, M. W. Sasnett, and T. F. Jr. Johnston, IEEE J. of Quant. Electron. 27, 1098 (1991).

    Article  Google Scholar 

  38. H. Richter, A. D. Semenov, S. Pavlov, L. Mahler, A. Tredicucci, K. Il’in, M. Siegel, and H.-W. Hübers, Appl. Phys. Lett. 93, 141108 (2008).

    Article  Google Scholar 

  39. M. Born and E. Wolf, Principles of Optics, 7th edition, Cambridge University Press (1999).

    Google Scholar 

  40. H. Richter, M. Greiner-Bär, N. Deßmann, J. Pfund, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, Appl. Phys. Lett. 101, 031103 (2012).

    Article  Google Scholar 

  41. Optocraft GmbH, available at www.optocraft.de

  42. W. H.Southwell, J. Opt. Soc. Am. 70, 998 (1980).

  43. H. Sickinger, O. Falkenstörfer, N. Lindlein, and J. Schwider, Opt. Eng. 33, 2680 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Tredicucci from NEST-CNR in Pisa, Italy, and H.T. Grahn, M. Giehler, R. Hey, L. Schrottke, and M. Wienold from Paul Drude Institute in Berlin, Germany, for providing QCLs and for many fruitful discussions. They thank J. Pfund from Optocraft GmbH, Germany, for support with the wavefront analysis software and R. Eichholz from DLR for support with the beam profile measurements. N. R. acknowledges support by the Helmholtz Research School on Security Technologies. This work was supported in part by the Investitionsbank Berlin (grant no. 10146488 and 10146490) within the EFRE program of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-W. Hübers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, H., Rothbart, N. & Hübers, HW. Characterizing the beam properties of terahertz quantum-cascade lasers. J Infrared Milli Terahz Waves 35, 686–698 (2014). https://doi.org/10.1007/s10762-014-0084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0084-x

Keywords

Navigation