Review of Terahertz Tomography Techniques

  • J. P. Guillet
  • B. Recur
  • L. Frederique
  • B. Bousquet
  • L. Canioni
  • I Manek-Hönninger
  • P. Desbarats
  • P. Mounaix
Invited Review Article

Abstract

Terahertz and millimeter waves penetrate various dielectric materials, including plastics, ceramics, crystals, and concrete, allowing terahertz transmission and reflection images to be considered as a new imaging tool complementary to X-Ray or Infrared. Terahertz imaging is a well-established technique in various laboratory and industrial applications. However, these images are often two-dimensional. Three-dimensional, transmission-mode imaging is limited to thin samples, due to the absorption of the sample accumulated in the propagation direction. A tomographic imaging procedure can be used to acquire and to render three-dimensional images in the terahertz frequency range, as in the optical, infrared or X-ray regions of the electromagnetic spectrum. In this paper, after a brief introduction to two dimensional millimeter waves and terahertz imaging we establish the principles of tomography for Terahertz Computed tomography (CT), tomosynthesis (TS), synthetic aperture radar (SAR) and time-of-flight (TOF) terahertz tomography. For each technique, we present advantages, drawbacks and limitations for imaging the internal structure of an object.

Keywords

Tomography Terahertz imaging 3D reconstruction Time of flight Holography Diffractive imaging Synthetic aperture radar (SAR) THz Computed tomography Iterative method BFP Volume inspection Non destructive testing Sinogram Millimeter waves Far infrared Spectro imaging Reflection and transmission images 

References

  1. 1.
    Zhang, X.C., Terahertz wave imaging: horizons and hurdles. Physics in Medicine and Biology, 2002. 47(21): p. 3667-3677.Google Scholar
  2. 2.
    Hangyo, M., M. Tani, and T. Nagashima, Terahertz time-domain spectroscopy of solids: a review. International journal of infrared and millimeter waves, 2005. 26(12): p. 1661-1690.Google Scholar
  3. 3.
    Mittleman, D.M., R.H. Jacobsen, and M.C. Nuss, T-ray imaging. IEEE Journal of Selected Topics in Quantum Electronics, 1996. 2(3): p. 679-692.Google Scholar
  4. 4.
    Cooper, K.B., et al., A high-resolution imaging radar at 580 GHz. IEEE Microwave and Wireless Components Letters, 2008. 18(1): p. 64-66.Google Scholar
  5. 5.
    Cooper, K.B., et al., Penetrating 3-D Imaging at 4-and 25-m Range Using a Submillimeter-Wave Radar. IEEE Transactions on Microwave Theory and Techniques, 2008. 56(12): p. 2771-2778.Google Scholar
  6. 6.
    Darmo, J., et al., Imaging with a Terahertz quantum cascade laser. Optics Express, 2004. 12(9): p. 1879-1884.Google Scholar
  7. 7.
    Fitzgerald, A.J., et al., Catalogue of human tissue optical properties at terahertz frequencies. Journal of Biological Physics, 2003. 29(2-3): p. 123-128.Google Scholar
  8. 8.
    Fitzgerald, A.J., et al., Terahertz pulsed imaging of human breast tumors. Radiology, 2006. 239(2): p. 533-540.Google Scholar
  9. 9.
    Nakajima, S., et al., Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Applied Physics Letters, 2007. 90(4): p. 041102.Google Scholar
  10. 10.
    Watanabe, Y., et al., Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging. Applied Physics Letters, 2003. 83(4): p. 800-802.Google Scholar
  11. 11.
    Beard, M.C., G.M. Turner, and C.A. Schmuttenmaer, Progress towards two-dimensional biomedical imaging with THz spectroscopy. Physics in Medicine and Biology, 2002. 47(21): p. 3841-3846.Google Scholar
  12. 12.
    Crowe, T.W., et al., Terahertz sources and detectors and their application to biological sensing. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004. 362(1815): p. 365-374.Google Scholar
  13. 13.
    Stringer, M.R., et al., The analysis of human cortical bone by terahertz time-domain spectroscopy. Physics in Medicine and Biology, 2005. 50(14): p. 3211-3219.Google Scholar
  14. 14.
    Siegel, P.H., Terahertz technology. Microwave Theory and Techniques, IEEE Transactions on, 2002. 50(3): p. 910-928.Google Scholar
  15. 15.
    Xu, J.Z., C.L. Zhang, and X.C. Zhang, Recent progress in terahertz science and technology. Progress in Natural Science, 2002. 12(10): p. 729-736.Google Scholar
  16. 16.
    Loeffler, T., et al., All-optoelectronic terahertz imaging systems and examples of their application. Proceedings of the IEEE, 2007. 95(8): p. 1576-1582.Google Scholar
  17. 17.
    Siebert, K.J., et al., Continuous-wave all-optoelectronic terahertz imaging. Applied Physics Letters, 2002. 80(16): p. 3003-3005.Google Scholar
  18. 18.
    Tonouchi, M., Cutting-edge terahertz technology. Nature Photonics, 2007. 1(2): p. 97-105.Google Scholar
  19. 19.
    Stoik, C.D., M.J. Bohn, and J.L. Blackshire, Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Optics Express, 2008. 16(21): p. 17039-17051.Google Scholar
  20. 20.
    Zhong, H., et al., Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sensors Journal, 2005. 5(2): p. 203-208.Google Scholar
  21. 21.
    Karpowicz, N., et al. Non-destructive sub-THz CW imaging. in Integrated Optoelectronic Devices 2005. 2005. International Society for Optics and Photonics.Google Scholar
  22. 22.
    Baxter, J.B. and C.A. Schmuttenmaer, Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. Journal of Physical Chemistry B, 2006. 110(50): p. 25229-25239.Google Scholar
  23. 23.
    Ueno, Y. and K. Ajito, Analytical terahertz spectroscopy. Analytical Sciences, 2008. 24(2): p. 185-192.Google Scholar
  24. 24.
    Fischer, B., et al., Chemical recognition in terahertz time-domain spectroscopy and imaging. Semiconductor Science and Technology, 2005. 20(7): p. S246-S253.Google Scholar
  25. 25.
    Wietzke, S., et al., Industrial applications of THz systems. 2009: p. 738506-738506.Google Scholar
  26. 26.
    King, M.D., W.D. Buchanan, and T.M. Korter, Identification and Quantification of Polymorphism in the Pharmaceutical Compound Diclofenac Acid by Terahertz Spectroscopy and Solid-State Density Functional Theory. Analytical Chemistry, 2011. 83(10): p. 3786-3792.Google Scholar
  27. 27.
    El Haddad, J., et al., Review in terahertz spectral analysis. TrAC Trends in Analytical Chemistry, 2013. 44: p. 98-105.Google Scholar
  28. 28.
    Hu, B.B. and M.C. Nuss, Imaging with terahertz waves. Optics Letters, 1995. 20(16): p. 1716.Google Scholar
  29. 29.
    Jiang, Z.P., X.G. Xu, and X.C. Zhang, Improvement of terahertz imaging with a dynamic subtraction technique. Applied Optics, 2000. 39(17): p. 2982-2987.Google Scholar
  30. 30.
    Jiang, Z.P. and X.C. Zhang, Terahertz imaging via electrooptic effect. IEEE Transactions on Microwave Theory and Techniques, 1999. 47(12): p. 2644-2650.Google Scholar
  31. 31.
    Jiang, Z.P. and X.C. Zhang, 2D measurement and spatio-temporal coupling of few-cycle THz pulses. Optics Express, 1999. 5(11): p. 243-248.Google Scholar
  32. 32.
    Karpowicz, N., et al., Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semiconductor Science and Technology, 2005. 20(7): p. S293-S299.Google Scholar
  33. 33.
    Lee, A.W. and Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt. Lett., 2005. 30(19): p. 2563-2565.Google Scholar
  34. 34.
    Ojefors, E., et al., A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE Journal of Solid-State Circuits, 2009. 44(7): p. 1968-1976.Google Scholar
  35. 35.
    Dobroiu, A., C. Otani, and K. Kawase, Terahertz-wave sources and imaging applications. Measurement Science & Technology, 2006. 17(11): p. R161-R174.Google Scholar
  36. 36.
    Petkie, D.T., et al., Active and passive imaging in the THz spectral region: phenomenology, dynamic range, modes, and illumination. J. Opt. Soc. Am. B, 2008. 25(9): p. 1523-1531.Google Scholar
  37. 37.
    Adam, A.J.L., Review of Near-Field Terahertz Measurement Methods and Their Applications How to Achieve Sub-Wavelength Resolution at THz Frequencies. Journal of Infrared Millimeter and Terahertz Waves, 2011. 32(8-9): p. 976-1019.Google Scholar
  38. 38.
    Bitzer, A. and M. Walther, Terahertz near-field imaging of metallic subwavelength holes and hole arrays. Applied Physics Letters, 2008. 92(23): p. 231101.Google Scholar
  39. 39.
    Chen, H.T., R. Kersting, and G.C. Cho, Terahertz imaging with nanometer resolution. Applied Physics Letters, 2003. 83(15): p. 3009-3011.Google Scholar
  40. 40.
    Kersting, R., et al., Terahertz near-field microscopy, in Advances in Solid State Physics, R. Haug, Editor. 2008, Springer-Verlag Berlin: Berlin. p. 203-222.Google Scholar
  41. 41.
    Awad, M.M. and R.A. Cheville, Transmission terahertz waveguide-based imaging below the diffraction limit. Applied Physics Letters, 2005. 86(22): p. 221107.Google Scholar
  42. 42.
    Federici, J.F., et al., Terahertz imaging using an interferometric array. Applied Physics Letters, 2003. 83(12): p. 2477-2479.Google Scholar
  43. 43.
    Chan, W.L., J. Deibel, and D.M. Mittleman, Imaging with terahertz radiation. Reports on Progress in Physics, 2007. 70(8): p. 1325-1379.Google Scholar
  44. 44.
    Dorney, T., et al., Imaging with THz pulses, in 2000 International Conference on Image Processing, Vol I, Proceedings. 2000. p. 764-767.Google Scholar
  45. 45.
    Herrmann, M., R. Fukasawa, and O. Morikawa, Terahertz imaging. Terahertz Optoelectronics, 2005. 97: p. 331-381.Google Scholar
  46. 46.
    Jansen, C., et al., Terahertz imaging: applications and perspectives. Appl. Opt., 2010. 49(19): p. E48-E57.Google Scholar
  47. 47.
    Jepsen, P.U., D.G. Cooke, and M. Koch, Terahertz spectroscopy and imaging - Modern techniques and applications. Laser & Photonics Reviews, 2011. 5(1): p. 124-166.Google Scholar
  48. 48.
    Mittleman, D.M., et al., Recent advances in terahertz imaging. Applied Physics B-Lasers and Optics, 1999. 68(6): p. 1085-1094.Google Scholar
  49. 49.
    Mickan, S., et al., Analysis of system trade-offs for terahertz imaging. Microelectronics Journal, 2000. 31(7): p. 503-514.Google Scholar
  50. 50.
    Planken, P.C.M., C. van Rijmenam, and R.N. Schouten, Opto-electronic pulsed THz systems. Semiconductor Science and Technology, 2005. 20(7): p. S121-S127.Google Scholar
  51. 51.
    Withayachumnankul, W., et al., T-Ray Sensing and Imaging. Proceedings of the IEEE, 2007. 95(8): p. 1528-1558.Google Scholar
  52. 52.
    Pickwell-Macpherson, E., et al., Recent developments of terahertz technology in biomedicine. Journal of Innovative Optical Health Sciences, 2008. 1(1): p. 29-44.Google Scholar
  53. 53.
    Baxter, J.B. and G.W. Guglietta, Terahertz Spectroscopy. Analytical Chemistry, 2011. 83(12): p. 4342-4368.Google Scholar
  54. 54.
    Zhang, X.-C. and J. Xu, Introduction to THz wave photonics. 2009: Springer.Google Scholar
  55. 55.
    Mittleman, D.M., Imaging and sensing with terahertz radiation, in Review of Progress in Quantitative Nondestructive Evaluation, Vols 24A and 24B, D.O. Thompson and D.E. Chimenti, Editors. 2005, Amer Inst Physics: Melville. p. 25-32.Google Scholar
  56. 56.
    Lee, Y.S., Principles of Terahertz Science and Technology, ed. Springer. 2009. 349.Google Scholar
  57. 57.
    Mittleman, D.M., Sensing with Terahertz Radiation, ed. Springer. 2003.Google Scholar
  58. 58.
    Pereira, M.F. and O. Shulika, Terahertz and Mid Infrared Radiation: Generation, Detection, and Applications (NATO Science for Peace and Security Series B: Physics and Biophysics). 2009.Google Scholar
  59. 59.
    Peiponen, K.-E.Z., Axel; Kuwata-Gonokami, Terahertz Spectroscopy and Imaging. Springer Series in Optical Sciences, Vol. 171, 2013.Google Scholar
  60. 60.
    Dexheimer, S.L., Terahertz Spectroscopy: Principles and Applications, ed. T.F. Group. 2008.Google Scholar
  61. 61.
    Sakai, K., Terahertz optoelectronics. Terahertz Optoelectronics, Edited by K. Sakai. Berlin: Springer, 2005. 1.Google Scholar
  62. 62.
    Katayama, I., et al., Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4-N-methyl-stilbazolium tosylate single crystals. Applied Physics Letters, 2010. 97(2): p. 021105-3.Google Scholar
  63. 63.
    Cai, Y., et al., Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection. Applied Physics Letters, 1998. 73(4): p. 444-446.Google Scholar
  64. 64.
    Kono, S., M. Tani, and K. Sakai, Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling. Applied Physics Letters, 2001. 79(7): p. 898-900.Google Scholar
  65. 65.
    Karpowicz, N., et al., Coherent heterodyne time-domain spectrometry covering the entire "terahertz gap". Applied Physics Letters, 2008. 92(1): p. 011131.MathSciNetGoogle Scholar
  66. 66.
    Loffler, T., et al., Visualization and classification in biomedical terahertz pulsed imaging. Physics in Medicine and Biology, 2002. 47(21): p. 3847-3852.Google Scholar
  67. 67.
    Jepsen, P.U. and B. Fischer, Dynamic range in terahertz time-domain transmission and reflectionspectroscopy. Opt. Lett., 2005. 30(1): p. 29-31.Google Scholar
  68. 68.
    Jin, K.H., et al., High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation. Opt. Express, 2012. 20(23): p. 25432-25440.Google Scholar
  69. 69.
    Bartels, A., et al., Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Review of Scientific Instruments, 2007. 78(3): p. 035107-8.Google Scholar
  70. 70.
    Wilk, R., et al., OSCAT: Novel Technique for Time-Resolved Experiments Without Moveable Optical Delay Lines. Journal of Infrared, Millimeter, and Terahertz Waves, 2011. 32(5): p. 596-602.Google Scholar
  71. 71.
    Chan, W.L., et al., A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 2008. 93(12): p. 121105.Google Scholar
  72. 72.
    Kohler, R., et al., Terahertz semiconductor-heterostructure laser. Nature, 2002. 417(6885): p. 156-159.Google Scholar
  73. 73.
    Lisauskas, A., et al., Terahertz imaging with GaAs field-effect transistors. Electronics Letters, 2008. 44(6): p. 408-409.Google Scholar
  74. 74.
    Knap, W., et al., Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications. Journal of Infrared Millimeter and Terahertz Waves, 2009. 30(12): p. 1319-1337.Google Scholar
  75. 75.
    El Fatimy, A., et al., Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications. Optics Communications, 2009. 282(15): p. 3055-3058.Google Scholar
  76. 76.
    Dobroiu, A., et al., Terahertz imaging system based on a backward-wave oscillator. Applied Optics, 2004. 43(30): p. 5637-5646.Google Scholar
  77. 77.
    Knyazev, B.A., et al., Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application. Journal of Infrared Millimeter and Terahertz Waves, 2011. 32(10): p. 1207-1222.MathSciNetGoogle Scholar
  78. 78.
    Li, Q., et al., Terahertz Computed Tomography Using A Continuous-Wave Gas Laser. Journal of Infrared Millimeter and Terahertz Waves, 2012. 33(5): p. 548-558.Google Scholar
  79. 79.
    Loeffler, T., et al., Continuous-wave terahertz imaging with a hybrid system. Applied Physics Letters, 2007. 90(9): p. 091111.Google Scholar
  80. 80.
    van der Valk, N.C.J., W.A.M. van der Marel, and P.C.M. Planken, Terahertz polarization imaging. Optics Letters, 2005. 30(20): p. 2802-2804.Google Scholar
  81. 81.
    Loffler, T., et al., Terahertz dark-field imaging of biomedical tissue. Optics Express, 2001. 9(12): p. 616-621.Google Scholar
  82. 82.
    Lee, K. and J. Ahn, Single-pixel coherent diffraction imaging. Applied Physics Letters, 2010. 97(24): p. 241101.Google Scholar
  83. 83.
    Lee, K., et al., Coherent optical computing for T-ray imaging. Optics Letters, 2010. 35(4): p. 508-510.Google Scholar
  84. 84.
    Chan, W.L., et al., Terahertz imaging with compressed sensing and phase retrieval. Opt. Lett., 2008. 33(9): p. 974-976.Google Scholar
  85. 85.
    Xu, Z. and E.Y. Lam, Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging. Journal of the Optical Society of America a-Optics Image Science and Vision, 2010. 27(7): p. 1638-1646.Google Scholar
  86. 86.
    Friederich, F., et al., THz Active Imaging Systems With Real-Time Capabilities. Terahertz Science and Technology, IEEE Transactions on, 2011. 1(1): p. 183-200.MathSciNetGoogle Scholar
  87. 87.
    Ruffin, A.B.., et al., Time reversal terahertz imaging. IEEE Journal of Quantum Electronics, 2002. 38(8): p. 1110-1119.Google Scholar
  88. 88.
    Kiwa, T., et al., Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Optics Letters, 2003. 28(21): p. 2058-2060.Google Scholar
  89. 89.
    Yamashita, M., et al., Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Optics Express, 2005. 13(1): p. 115-120.Google Scholar
  90. 90.
    Johnson, J.L., T.D. Dorney, and D.M. Mittleman, Interferometric Imaging with terahertz pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2001. 7(4): p. 592-599.Google Scholar
  91. 91.
    Johnson, J.L., T.D. Dorney, and D.M. Mittleman, Enhanced depth resolution in terahertz imaging using phase-shift interferometry. Applied Physics Letters, 2001. 78(6): p. 835-837.Google Scholar
  92. 92.
    Kemp, M.C., et al. Security applications of terahertz technology. in Terahertz for Military and Security Applications. 2003. Orlando, FL, USA: SPIE.Google Scholar
  93. 93.
    Hoshina, H., et al., Noninvasive mail inspection system with terahertz radiation. Applied Spectroscopy, 2009. 63(1): p. 81-86.Google Scholar
  94. 94.
    Allis, D.G. and T.M. Korter, Theoretical analysis of the terahertz spectrum of the high explosive PETN. Chemphyschem, 2006. 7(11): p. 2398-2408.Google Scholar
  95. 95.
    Baker, C., et al., Detection of concealed explosives at a distance using terahertz technology. Proceedings of the IEEE, 2007. 95(8): p. 1559-1565.Google Scholar
  96. 96.
    Kemp, M.C., Explosives Detection by Terahertz Spectroscopy ;A Bridge Too Far? Terahertz Science and Technology, IEEE Transactions on, 2011. 1(1): p. 282-292.Google Scholar
  97. 97.
    Zhong, H., A. Redo-Sanchez, and X.C. Zhang, Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Optics Express, 2006. 14(20): p. 9130-9141.Google Scholar
  98. 98.
    Federici, J.F., et al., THz imaging and sensing for security applications - explosives, weapons and drugs. Semiconductor Science and Technology, 2005. 20(7): p. S266-S280.Google Scholar
  99. 99.
    Kawase, K., Terahertz imaging for drug detection and large-scale integrated circuit inspection. Optics & Photonics News, 2004. 15(10): p. 34-39.Google Scholar
  100. 100.
    Lu, M., et al., Detection and identification of illicit drugs using terahertz imaging. Journal of Applied Physics, 2006. 100(10).Google Scholar
  101. 101.
    Kawase, K., et al., Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express, 2003. 11(20): p. 2549-2554.Google Scholar
  102. 102.
    Liu, H.B., et al., Terahertz spectroscopy and imaging for defense and security applications. Proceedings of the IEEE, 2007. 95(8): p. 1514-1527.Google Scholar
  103. 103.
    Appleby, R. and R.N. Anderton, Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proceedings of the IEEE, 2007. 95(8): p. 1683-1690.Google Scholar
  104. 104.
    Jepsen, P.U., U. Moller, and H. Merbold, Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Optics Express, 2007. 15(22): p. 14717-14737.Google Scholar
  105. 105.
    Rahani, E.K., et al., Mechanical Damage Detection in Polymer Tiles by THz Radiation. IEEE Sensors Journal, 2011. 11(8): p. 1720-1725.Google Scholar
  106. 106.
    Mousavi, P., et al., Simultaneous composition and thickness measurement of paper using terahertz time-domain spectroscopy. Appl. Opt., 2009. 48(33): p. 6541-6546.Google Scholar
  107. 107.
    Yasui, T., et al., Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Applied Optics, 2005. 44(32): p. 6849-6856.Google Scholar
  108. 108.
    Wietzke, S., et al., Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints. Journal of the European Optical Society - Rapid publications; Vol 2 2007: p. 07013.Google Scholar
  109. 109.
    Nguema, E., et al., Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy. European Polymer Journal, 2008. 44(1): p. 124-129.Google Scholar
  110. 110.
    Banerjee, D., et al., Diagnosing water content in paper by terahertz radiation. Opt. Express, 2008. 16(12): p. 9060-9066.Google Scholar
  111. 111.
    Park, J.-W., et al., Terahertz spectroscopy approach of the fiber orientation influence on CFRP composite solid laminates. Journal of Mechanical Science and Technology, 2012. 26(7): p. 2051-2054.Google Scholar
  112. 112.
    Kawase, K., et al., THz imaging techniques for nondestructive inspections. Comptes Rendus Physique, 2010. 11(7-8): p. 510-518.Google Scholar
  113. 113.
    Seong-Tae, H., et al. Development of a compact sub-terahertz gyrotron and its application to t-ray real-time imaging for food inspection. in Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2012 37th International Conference on. 2012.Google Scholar
  114. 114.
    Jördens, C. and M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Optical Engineering, 2008. 47(3): p. 037003-037003.Google Scholar
  115. 115.
    Hor, Y.L., J.F. Federici, and R.L. Wample, Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging. Applied Optics, 2008. 47(1): p. 72-78.Google Scholar
  116. 116.
    Zeitler, J.A., et al., Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting – a review J. Pharm. Pharmacol., 2007. 59: p. 209.Google Scholar
  117. 117.
    Shen, Y.-C., Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. International Journal of Pharmaceutics, 2011. 417(1–2): p. 48-60.Google Scholar
  118. 118.
    King, M.D., P.M. Hakey, and T.M. Korter, Discrimination of chiral solids: A terahertz spectroscopic investigation of L-and DL-serine. The Journal of Physical Chemistry A, 2010. 114(8): p. 2945-2953.Google Scholar
  119. 119.
    Shen, Y.-C. and P.F. Taday, Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet. IEEE Journal of Selected Topics in Quantum Electronics, 2008. 14(2): p. 407-415.Google Scholar
  120. 120.
    Fitzgerald, A.J., B.E. Cole, and P.F. Taday, Nondestructive analysis of tablet coating thicknesses usign terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2005. 94(1): p. 177-183.Google Scholar
  121. 121.
    Maurer, L. and H. Leuenberger, Terahertz pulsed imaging and near infrared imaging to monitor the coating process of pharmaceutical tablets. International Journal of Pharmaceutics, 2009. 370: p. 8-16.Google Scholar
  122. 122.
    Ho, L., et al., Analysis of sustained-release tablet film coats using terahertz pulsed imaging. Journal of Controlled Release, 2007. 119(3): p. 253-261.Google Scholar
  123. 123.
    Mounaix, P., et al., Spectroscopy and terahertz imaging for sigillography applications. Journal of the European Optical Society-Rapid Publications vol 6 11002, 2011. 6: p. 1002.Google Scholar
  124. 124.
    Jackson, J.B., et al., Terahertz imaging for non-destructive evaluation of mural paintings. Optics Communications, 2008. 281(4): p. 527-532.Google Scholar
  125. 125.
    Abraham, E., et al., Broadband terahertz imaging of documents written with lead pencils. Optics Communications, 2009. 282(15): p. 3104-3107.Google Scholar
  126. 126.
    Adam, A.J.L., et al., TeraHertz imaging of hidden paintlayers on canvas. Opt. Express, 2009. 17(5): p. 3407-3416.Google Scholar
  127. 127.
    Fukunaga, K. and I. Hosako, Innovative non-invasive analysis techniques for cultural heritage using terahertz technology. Comptes Rendus Physique, 2010. 11(7–8): p. 519-526.Google Scholar
  128. 128.
    Fukunaga, K., et al., Application of terahertz spectroscopy for character recognition in a medieval manuscript. IEICE Electronics Express, 2008. 5(7): p. 223-228.Google Scholar
  129. 129.
    Oehrstroem, L., et al., Technical Note: Terahertz Imaging of Ancient Mummies and Bone. American Journal of Physical Anthropology, 2010. 142(3): p. 497-500.Google Scholar
  130. 130.
    Mittleman, D.M., et al., T-ray tomography. Optics Letters, 1997. 22(12): p. 904-906.Google Scholar
  131. 131.
    Zhang, X.C., Three-dimensional terahertz wave imaging. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2004. 362(1815): p. 283-298.Google Scholar
  132. 132.
    Wang, S. and X.C. Zhang, Pulsed terahertz tomography. Journal of Physics D: Applied Physics, 2004. 37(4): p. R1.Google Scholar
  133. 133.
    Semenov, S.Y., et al., Three-dimensional microwave tomography: initial experimental imaging of animals. Biomedical Engineering, IEEE Transactions on, 2002. 49(1): p. 55-63.Google Scholar
  134. 134.
    Nguyen, K.L., et al., Three-dimensional imaging with a terahertz quantum cascade laser. Optics Express, 2006. 14(6): p. 2123-2129.Google Scholar
  135. 135.
    Kato, E., et al., 3D Spectroscopic Computed Tomography Imaging Using Terahertz Waves. 35th International Conference on Infrared, Millimeter, and Terahertz Waves. 2010.Google Scholar
  136. 136.
    Wallace, V.P., et al., Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. Journal of the Optical Society of America a-Optics Image Science and Vision, 2008. 25(12): p. 3120-3133.Google Scholar
  137. 137.
    Gbur, G. and E. Wolf, Relation between computed tomography and diffraction tomography. JOSA A, 2001. 18(9): p. 2132-2137.MathSciNetGoogle Scholar
  138. 138.
    Ferguson, B., et al., T-ray computed tomography. Optics Letters, 2002. 27(15): p. 1312-1314.Google Scholar
  139. 139.
    Chen, K. and D.A. Castanon, Robust Multifrequency Inversion in Terahertz Diffraction Tomography, in Computational Imaging Ix, C.A. Bouman, I. Pollak, and P.J. Wolfe, Editors. 2011.Google Scholar
  140. 140.
    Jin, K.H., et al., Compressed sensing pulse-echo mode terahertz reflectance tomography. Optics Letters, 2009. 34(24): p. 3863-3865.Google Scholar
  141. 141.
    Sunaguchi, N., et al., Depth-resolving THz imaging with tomosynthesis. Optics Express, 2009. 17(12): p. 9558-9570.Google Scholar
  142. 142.
    Niklason, L.T., et al., Digital tomosynthesis in breast imaging. Radiology, 1997. 205(2): p. 399-406.Google Scholar
  143. 143.
    Takayanagi, J., et al., High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Optics Express, 2009. 17(9): p. 7549-7555.MathSciNetGoogle Scholar
  144. 144.
    Hirsch, O., P. Alexander, and L.F. Gladden, Techniques for cancellation of interfering multiple reflections in terahertz time-domain measurements. Microelectronics Journal, 2008. 39(5): p. 841-848.Google Scholar
  145. 145.
    Kitahara, H., et al., THz tomographic imaging by using two-dimensional electro-optic sampling. 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Vols 1 and 2. 2007. 892-893.Google Scholar
  146. 146.
    Kitahara, H., M. Tani, and M. Hangyo, Three-Dimensional Tomographic Imaging in Terahertz Region. Japanese journal of applied physics, 2010. 49(2).Google Scholar
  147. 147.
    Cho, S.-H., et al., Fast terahertz reflection tomography using block-based compressed sensing. Optics Express. 19(17): p. 16401-16409.Google Scholar
  148. 148.
    Takayanagi, J., et al., High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Optics express, 2009. 17(9): p. 7533-7539.MathSciNetGoogle Scholar
  149. 149.
    Brucherseifer, M., et al., Angle-dependent THz tomography–characterization of thin ceramic oxide films for fuel cell applications. Applied Physics B: Lasers and Optics, 2001. 72(3): p. 361-366.Google Scholar
  150. 150.
    Schwerdtfeger, M., et al., Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy. Applied Optics, 2013. 52(3): p. 375-380.Google Scholar
  151. 151.
    Pearce, J., et al., T-ray reflection computed tomography. 2005 Conference on Lasers & Electro-Optics. 2005. 2120-2122.Google Scholar
  152. 152.
    Pearce, J., et al., Terahertz wide aperture reflection tomography. Optics Letters, 2005. 30(13): p. 1653-1655.Google Scholar
  153. 153.
    Matoba, O., et al., Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram. Applied Optics, 2002. 41(29): p. 6187-6192.Google Scholar
  154. 154.
    Zhang, Y., et al., Terahertz digital holography. Strain, 2008. 44(5): p. 380-385.Google Scholar
  155. 155.
    Ruffin, A.B.., et al., Time reversal and object reconstruction with single-cycle pulses. Optics letters, 2001. 26(10): p. 681-683.Google Scholar
  156. 156.
    Mahon, R.J., J.A. Murphy, and W. Lanigan, Digital holography at millimetre wavelengths. Optics Communications, 2006. 260(2): p. 469-473.Google Scholar
  157. 157.
    McAuley, I., et al., Applications of holography in the millimeter wave and terahertz region, in Terahertz Technology and Applications IV, L.P. Sadwick and C.M.M. Osullivan, Editors. 2011.Google Scholar
  158. 158.
    Ding, S.-H., et al., Continuous-wave terahertz digital holography by use of a pyroelectric array camera. Optics letters, 2011. 36(11): p. 1993-1995.Google Scholar
  159. 159.
    Knyazev, B.A., et al., Classic holography, tomography and speckle metrology using a high-power terahertz free electron laser and real-time image detectors. 35th International Conference on Infrared, Millimeter, and Terahertz Waves. 2010.Google Scholar
  160. 160.
    Li, Q., et al., Research on Reconstruction Algorithms in 2.52 THz Off-axis Digital Holography. Journal of Infrared Millimeter and Terahertz Waves, 2012. 33(10): p. 1039-1051.Google Scholar
  161. 161.
    Li, Q., et al., Experimental research on resolution improvement in CW THz digital holography. Applied Physics B-Lasers and Optics, 2012. 107(1): p. 103-110.Google Scholar
  162. 162.
    Jahns, J. and S.J. Walker, Two-dimensional array of diffractive microlenses fabricated by thin film deposition. Applied optics, 1990. 29(7): p. 931-936.Google Scholar
  163. 163.
    Wang, S. and X.-C. Zhang, Tomographic imaging with a terahertz binary lens. Applied physics letters, 2003. 82(12): p. 1821-1823.Google Scholar
  164. 164.
    Walsby, E., et al., Multilevel silicon diffractive optics for terahertz waves. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002. 20(6): p. 2780-2783.Google Scholar
  165. 165.
    Wang, S., et al., Characterization of T-ray binary lenses. Optics letters, 2002. 27(13): p. 1183-1185.Google Scholar
  166. 166.
    McClatchey, K., M.T. Reiten, and R.A. Cheville, Time resolved synthetic aperture terahertz impulse imaging. Applied Physics Letters, 2001. 79(27): p. 4485-4487.Google Scholar
  167. 167.
    Henry, S.C., et al., Three-dimensional broadband terahertz synthetic aperture imaging. Optical Engineering, 2012. 51(9).Google Scholar
  168. 168.
    O'Hara, J. and D. Grischkowsky, Quasi-optic synthetic phased-array terahertz imaging. Journal of the Optical Society of America B-Optical Physics, 2004. 21(6): p. 1178-1191.Google Scholar
  169. 169.
    Heimbeck, M.S., et al., Terahertz interferometric synthetic aperture tomography for confocal imaging systems. Optics Letters, 2012. 37(8): p. 1316-1318.Google Scholar
  170. 170.
    Bandyopadhyay, A., et al., Terahertz interferometric and synthetic aperture imaging. Journal of the Optical Society of America A, 2006. 23(5): p. 1168-1178.Google Scholar
  171. 171.
    O'Hara, J. and D. Grischkowsky, Synthetic phased-array terahertz imaging. Optics letters, 2002. 27(12): p. 1070-1072.Google Scholar
  172. 172.
    Buma, T. and T.B. Norris, Time reversal three-dimensional imaging using single-cycle terahertz pulses. Applied Physics Letters, 2004. 84(12): p. 2196-2198.Google Scholar
  173. 173.
    Dorney, T.D., et al., Terahertz reflection imaging using Kirchhoff migration. Optics Letters, 2001. 26(19): p. 1513-1515.Google Scholar
  174. 174.
    Musheinesh, M.A., et al., Time-reversal and model-based imaging in a THz waveguide. Opt. Express, 2009. 17(16): p. 13663-13670.Google Scholar
  175. 175.
    Brahm, A., et al., Volumetric spectral analysis of materials using terahertz-tomography techniques. Applied Physics B-Lasers and Optics, 2010. 100(1): p. 151-158.Google Scholar
  176. 176.
    Jewariya, M., et al., Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse. Opt. Express, 2013. 21(2): p. 2423-2433.Google Scholar
  177. 177.
    Ewers, B., et al., Terahertz Spectral Computed Tomography. 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Vols 1 and 2. 2009. 138-139.Google Scholar
  178. 178.
    Toft, P., The Radon Transform : Theory and Implementation,” Ph.D. dissertation, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark, 1996. . 1996.Google Scholar
  179. 179.
    Radon, J., Uber die Bestimmung von Funktionen durch ihre In- tegralwerte langs gewisser Mannigfaltigkeiten.” Ber. Ver. Sachs. Akad. Wiss. Leipzig, in German. An english translation can be found in S. R. Deans : The Radon Transform and Some of Its Applications. . Math-Phys. Kl, vol. 69, pp. 262–277, April 1917.Google Scholar
  180. 180.
    Hounsfield, G.N., Computerized transverse axial scanning (tomography): Part 1. Description of system. British Journal of Radiology, 1973. 46(552): p. 1016-1022.Google Scholar
  181. 181.
    Ter-Pogossian, M.M., et al., A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology, 1975. 114(1): p. 89-98.Google Scholar
  182. 182.
    Toft, P.A., Iterative Methods for Reconstructing PET Images. 1996.Google Scholar
  183. 183.
    Recur, B., et al., Investigation on reconstruction methods applied to 3D terahertz computed tomography. Optics Express, 2011. 19(6): p. 5105-5117.Google Scholar
  184. 184.
    Shepp, L.A. and B.F. Logan, The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci, 1974. 21(3): p. 21-43.Google Scholar
  185. 185.
    Andersen, A.H., Application of ray tracing towards a correction for refracting effects in computed tomography with diffracting sources. :Thesis (Ph. D.), 1983(Purdue Univ.,Lafayette, IN).Google Scholar
  186. 186.
    Shepp, L.A. and Y. Vardi, Maximum likelihood reconstruction for emission tomography. Medical Imaging, IEEE Transactions on, 1982. 1(2): p. 113-122.Google Scholar
  187. 187.
    Kuba, A. and G. Hermann, Discrete Tomography: Foundations, Algorithms and Applications, 1999, Birkhauser.Google Scholar
  188. 188.
    Katz, M.B., Questions of uniqueness and resolution in reconstruction from projections. 1978: Springer-Verlag.Google Scholar
  189. 189.
    Averbuch, A., et al., Fast and accurate polar Fourier transform. Applied and Computational Harmonic Analysis, 2006. 21(2): p. 145-167.MATHMathSciNetGoogle Scholar
  190. 190.
    Jones, R., T. Cooke, and N.J. Redding, Implementation of the Radon Transform Using Non-equispaced Discrete Fourier Transforms, 2004, DTIC Document.Google Scholar
  191. 191.
    Potts, D. and G. Steidl. New Fourier reconstruction algorithms for computerized tomography. in International Symposium on Optical Science and Technology. 2000. International Society for Optics and Photonics.Google Scholar
  192. 192.
    Gordon, R., A Tutorial on ART (Algebraic Reconstruction Techniques. IEEE Trans. Nucl. Sci. NS-21, 1974(3): p. 78-93.Google Scholar
  193. 193.
    Gordon, R., R. Bender, and G.T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. Journal of theoretical Biology, 1970. 29(3): p. 471.Google Scholar
  194. 194.
    Herman, G.T., Image reconstruction from projections. Real-Time Imaging, 1995. 1(1): p. 3-18.Google Scholar
  195. 195.
    Herman, G.T. and L.B. Meyer, Algebraic reconstruction techniques can be made computationally efficient [positron emission tomography application]. Medical Imaging, IEEE Transactions on, 1993. 12(3): p. 600-609.Google Scholar
  196. 196.
    Lent, A. Maximum entropy and multiplicative ART. in Proc. Conf. Image Analysis and Evaluation, SPSE, Toronto. 1976.Google Scholar
  197. 197.
    Lu, W. and F.-F. Yin, Adaptive algebraic reconstruction technique. Medical physics, 2004. 31: p. 3222.Google Scholar
  198. 198.
    Gilbert, P., Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology, 1972. 36(1): p. 105.Google Scholar
  199. 199.
    Mumcuoglu, E., et al., Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. Medical Imaging, IEEE Transactions on, 1994. 13(4): p. 687-701.Google Scholar
  200. 200.
    Kaufman, L., Maximum likelihood, least squares, and penalized least squares for PET. Medical Imaging, IEEE Transactions on, 1993. 12(2): p. 200-214.Google Scholar
  201. 201.
    Recur, B., et al., Terahertz radiation for tomographic inspection. Optical Engineering, 2012. 51(9): p. 091609-1-091609-7.Google Scholar
  202. 202.
    Oden, J., et al., Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature. Opt. Express, 2013. 21(4): p. 4817-4825.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. P. Guillet
    • 1
  • B. Recur
    • 1
  • L. Frederique
    • 2
  • B. Bousquet
    • 1
  • L. Canioni
    • 1
  • I Manek-Hönninger
    • 1
  • P. Desbarats
    • 2
  • P. Mounaix
    • 1
  1. 1.Université de Bordeaux, LOMA, UMR CNRS 5798Talence CedexFrance
  2. 2.Université de Bordeaux, LaBRI, UMR CNRS 5800Talence CedexFrance

Personalised recommendations