Skip to main content
Log in

Developments in THz Range Ellipsometry

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Ellipsometry is a technique whereby the measurement of the two orthogonal polarization components of light reflected at glancing incidence allows a characterization of the optical properties of a material at a particular frequency. Importantly, it obviates the need for measurement against a standard reference sample, and so can provide reliable spectroscopic information even when surface morphology is unknown, of marginal quality and/or a reference is unavailable. Although a standard technique in the visible range, it has not been widely applied in the Terahertz (THz) spectral range despite its potential utility. This is largely because of the technical difficulties that these frequencies present. This review details recent progress in the implementation of THz range ellipsometry. We discuss a variety of configurations including various kinds of laboratory and facility based sources using both continuous wave and pulsed spectroscopic methods. We discuss the general problems encountered when trying to import the methodologies of visible range ellipsometry to the THz range and give examples of where the technique has been successful thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)

  2. H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A Users Guide (Wiley, New York, 1999)

  3. H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew, New York, 2005)

  4. M. Schubert, Infrared Ellipsometry On Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons (Springer, Heidelberg, 2004)

  5. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)

  6. M. Sherwin, C. Schmuttenmaer, P. Bucksbaum, Opportunities in THz Science: Report of a DOE-NSF-NIH Workshop; Arlington, VA (2004)

  7. R. Kaindl, M. Carnahan, D. Hägele, R. Lövenich, D. Chemla, Nature 423(6941), 734 (2003)

    Google Scholar 

  8. J. Heyman, R. Kersting, K. Unterrainer, Applied physics letters 72(6), 644 (1998)

    Google Scholar 

  9. R. Valdés Aguilar, A. Stier, W. Liu, L. Bilbro, D. George, N. Bansal, L. Wu, J. Cerne, A. Markelz, S. Oh, et al., Physical review letters 108(8), 87403 (2012)

  10. A. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yagvesson, Microwave and Guided Wave Letters, IEEE 10(7), 264 (2000)

    Google Scholar 

  11. J. Corson, R. Mallozzi, J. Orenstein, J. Eckstein, I. Bozovic, Nature 398(6724), 221 (1999)

    Google Scholar 

  12. L. Bilbro, R. Aguilar, G. Logvenov, O. Pelleg, I. Boović, N. Armitage, Nature Physics 7(4), 298 (2011)

    Google Scholar 

  13. S. Wang, B. Ferguson, D. Abbott, X. Zhang, Journal of Biological Physics 29(2), 247 (2003)

    Google Scholar 

  14. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Büttner, Applied optics 41(10), 2074 (2002)

    Google Scholar 

  15. B. Hu, M. Nuss, Optics letters 20(16), 1716 (1995)

    Google Scholar 

  16. J. Johnson, T. Dorney, D. Mittleman, Applied Physics Letters 78(6), 835 (2001)

    Google Scholar 

  17. S. Wang, B. Ferguson, D. Abbott, X. Zhang, Journal of Biological Physics 29(2), 247 (2003)

    Google Scholar 

  18. D. Mittleman, S. Hunsche, L. Boivin, M. Nuss, Optics letters 22(12), 904 (1997)

    Google Scholar 

  19. S. Nashima, O. Morikawa, K. Takata, M. Hangyo, Appl. Phys. Lett. 79, 3923 (2001)

    Google Scholar 

  20. A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, P. Kuzel, Rev. Sci. Instrum. 74, 4711 (2003)

    Google Scholar 

  21. L. Thrane, R. Jacobsen, P.U. Jepsen, S. Keiding, Chemical Physics Letters 240(4), 330 (1995)

    Google Scholar 

  22. S.C. Howells, L.A Schlie, Applied Physics Letters 69(4), 550 (1996)

    Google Scholar 

  23. C. Ronne, L. Thrane, P.O. AAstrand, A. Wallqvist, K.V. Mikkelsen, S.R. Keiding, The Journal of Chemical Physics 107(14), 5319 (1997)

    Google Scholar 

  24. J. Van Mechelen, D. Van Der Marel, I. Crassee, T. Kolodiazhnyi, Physical Review Letters 106(21), 217601 (2011)

    Google Scholar 

  25. T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A Woollam, M. Schubert, Rev. Sci. Instrum. 81, 023101 (2010)

    Google Scholar 

  26. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th edn., chap. 14

  27. D.W. Berreman, J. Opt. Soc. Am. 62(4), 502 (1972)

  28. R.W. Collins, Rev. Sci. Instrum. 61, 2029 (1990)

  29. G.E. Jellison, F.A. Modine, Appl. Opt. 36, 81848189 (1997)

    Google Scholar 

  30. J.M.M. de Nijs, A.H.M. Holtslag, A. Hoeksta, A. van, Silfhout, J. Opt. Soc. Am. A 5, 14661471 (1988)

    Google Scholar 

  31. B. Johs, Thin Solid Films 234, 395 (1993)

    Google Scholar 

  32. N.V. Nguyen, B.S. Pudliner, I. An, R.W. Collins, J. Opt. Soc. Am. A 8, 919931 (1991)

    Google Scholar 

  33. A. Röseler, Infrared spectroscopic ellipsometry (VCH, 1990)

  34. F. Ferrieu, Review of Scientific Instruments 60(10), 3212 (1989)

    Google Scholar 

  35. J. Bremer, O. Hunderi, K. Fanping, T. Skauli, Applied optics 31(4), 471 (1992)

    Google Scholar 

  36. D. Aspnes, Handbook of Optical Constants of Solids 1, 89 (1985)

  37. J. Kircher, R. Henn, M. Cardona, P. Richards, G. Williams, JOSA B 14(4), 705 (1997)

    Google Scholar 

  38. N. Matsumoto, T. Hosokura, T. Nagashima, M. Hangyo, Optics letters 36(2), 265 (2011)

    Google Scholar 

  39. K. Barth, C. Böhme, K. Kamaräs, F. Keilmann, M. Cardona, Thin solid films 234(1), 314 (1993)

    Google Scholar 

  40. M. Schubert, T. Hofmann, C. Herzinger, JOSA A 20(2), 347 (2003)

    Google Scholar 

  41. T. Hofmann, C. Herzinger, T. Tiwald, J. Woollam, M. Schubert, Applied Physics Letters 95(3), 032102 (2009)

    Google Scholar 

  42. T. Hofmann, A. Boosalis, P. Kuhne, C. Herzinger, J. Woollam, D. Gaskill, J. Tedesco, M. Schubert, Applied Physics Letters 98(4), 041906 (2011)

    Google Scholar 

  43. T. Hofmann, C. Herzinger, J. edesco, D. Gaskill, J. Woollam, M. Schubert, Thin Solid Films 519(9), 2593 (2011)

    Google Scholar 

  44. C. Bernhard, J. Humlìcek, B. Keimer, Thin Solid Films 455, 143 (2004)

    Google Scholar 

  45. A. Boris, N. Kovaleva, O. Dolgov, T. Holden, C. Lin, B. Keimer, C. Bernhard, Science 304(5671), 708 (2004)

    Google Scholar 

  46. C. Bernhard, T. Holden, J. Humlìcek, D. Munzar, A. Golnik, M. Kläser, T. Wolf, L. Carr, C. Homes, B. Keimer, et al., Solid State Comm. 121(2), 93 (2002)

    Google Scholar 

  47. A. Roseler, U. Schade, K. Hoildack, in Infrared and Millimeter Waves and 13th In-ternational Conference on Terahertz Electronics, 2005. IRMMW-THz 2005. The Joint 30th International Conference on, vol. 1 (IEEE, 2005), pp. 190–191

  48. T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, M. Schubert, Review of scientific instruments 77(6), 063902 (2006)

    Google Scholar 

  49. T. Hofmann, U. Schade, K. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. Herzinger, M. Schubert, Applied Physics Letters 88(4), 042105 (2006)

    Google Scholar 

  50. T.N. Stanislavchuk, T.D. Kang, P.D. Rogers, E.C.Standard, R. Basistyy, A.M. Kotelyanskii, G. Nita, T. Zhou, G.L. Carr, M. Kotelyanskii, A.A Sirenko, Review of Scientific Instruments 84(2), 023901 (2013)

    Google Scholar 

  51. P. Rogers, Y. Choi, E. Standard, T. Kang, K. Ahn, A. Dubroka, P. Marsik, C. Wang, C. Bernhard, S. Park, et al., Physical Review B 83(17), 174407 (2011)

    Google Scholar 

  52. T. Kang, E. Standard, G. Carr, T. Zhou, M. Kotelyanskii, A. Sirenko, Thin Solid Films 519 (9), 2698 (2011)

    Google Scholar 

  53. A. Pimenov, A. Mukhin, V. Ivanov, V. Travkin, A. Balbashov, A. Loidl, Nature Physics 2(2), 97 (2006)

    Google Scholar 

  54. A. Sushkov, R. Aguilar, S. Park, S. Cheong, H. Drew, Physical review letters 98(2), 27202 (2007)

    Google Scholar 

  55. R. Valdés Aguilar, M .Mostovoy, A. Sushkov, C. Zhang, Y. Choi, S. Cheong, H. Drew, Physical review letters 102(4), 47203 (2009)

  56. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7(10), 2006 (1990)

    Google Scholar 

  57. T. Nagashima, M. Hangyo, Applied Physics Letters 79(24), 3917 (2001)

    Google Scholar 

  58. R. Shimano, Y. Ino, Y. Svirko, M. Kuwata-Gonokami, Applied physics letters 81(2), 199 (2002)

    Google Scholar 

  59. Y. Ino, R. Shimano, Y. Svirko, M. Kuwata-Gonokami, Physical Review B 70(15), 155101 (2004)

    Google Scholar 

  60. K. Yatsugi, N. Matsumoto, T. Nagashima, M. Hangyo, Applied Physics Letters 98(21), 212108 (2011)

    Google Scholar 

  61. N. Matsumoto, T. Fujii, K .Kageyama, H. Takagi, T. Nagashima, M. Hangyo, Japanese Journal of Applied Physics 48(9), 09KC11 (2009)

  62. M. Neshat, N.P. Armitage, Optics Express 20(27), 29063 (2012)

    Google Scholar 

  63. C.J. Hensley, M.A. Foster, B. Shim, A.L. Gaeta, in Proceedings of Lasers and Electro-Optics (San Jose, Calif., 2008), p. JFG1

  64. M. van Exter, D. Grischkowsky, Applied Physics Letters 56(17), 1694 (1990)

    Google Scholar 

  65. M. Neshat, L. Wu, N.P. Armitage, to be submitted (2013)

  66. L. Wu, M. Neshat, S. Koohpayeh, N.P. Armitage, to be submitted (2013)

  67. E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, C. Jagadish, Applied Physics Letters 86(25), 254102 (2005)

    Google Scholar 

  68. C. Morris, R. Aguilar, A. Stier, N. Armitage, Optics Express 20(11), 12303 (2012)

    Google Scholar 

  69. D. George, A. Stier, C. Ellis, B. McCombe, J. Černe, A. Markelz, JOSA B 29(6), 1406 (2012)

    Google Scholar 

  70. D. Aschaffenburg, M. Williams, D. Talbayev, D. Santavicca, D. Prober, C. Schmuttenmaer, Applied Physics Letters 100(24), 241114 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was made possible by support from the Gordon and Betty Moore Foundation through Grant GBMF2628 to NPA and DARPA YFA N66001-10-1-4017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Armitage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neshat, M., Armitage, N.P. Developments in THz Range Ellipsometry. J Infrared Milli Terahz Waves 34, 682–708 (2013). https://doi.org/10.1007/s10762-013-9984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9984-4

Keywords

Navigation