Advertisement

Developments in THz Range Ellipsometry

  • M. Neshat
  • N. P. Armitage
Article

Abstract

Ellipsometry is a technique whereby the measurement of the two orthogonal polarization components of light reflected at glancing incidence allows a characterization of the optical properties of a material at a particular frequency. Importantly, it obviates the need for measurement against a standard reference sample, and so can provide reliable spectroscopic information even when surface morphology is unknown, of marginal quality and/or a reference is unavailable. Although a standard technique in the visible range, it has not been widely applied in the Terahertz (THz) spectral range despite its potential utility. This is largely because of the technical difficulties that these frequencies present. This review details recent progress in the implementation of THz range ellipsometry. We discuss a variety of configurations including various kinds of laboratory and facility based sources using both continuous wave and pulsed spectroscopic methods. We discuss the general problems encountered when trying to import the methodologies of visible range ellipsometry to the THz range and give examples of where the technique has been successful thus far.

Keywords

Terahertz Infrared optics Ellipsometry Materials characterization 

Notes

Acknowledgments

This work was made possible by support from the Gordon and Betty Moore Foundation through Grant GBMF2628 to NPA and DARPA YFA N66001-10-1-4017.

References

  1. 1.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)Google Scholar
  2. 2.
    H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A Users Guide (Wiley, New York, 1999)Google Scholar
  3. 3.
    H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew, New York, 2005)Google Scholar
  4. 4.
    M. Schubert, Infrared Ellipsometry On Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons (Springer, Heidelberg, 2004)Google Scholar
  5. 5.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007)Google Scholar
  6. 6.
    M. Sherwin, C. Schmuttenmaer, P. Bucksbaum, Opportunities in THz Science: Report of a DOE-NSF-NIH Workshop; Arlington, VA (2004)Google Scholar
  7. 7.
    R. Kaindl, M. Carnahan, D. Hägele, R. Lövenich, D. Chemla, Nature 423(6941), 734 (2003)Google Scholar
  8. 8.
    J. Heyman, R. Kersting, K. Unterrainer, Applied physics letters 72(6), 644 (1998)Google Scholar
  9. 9.
    R. Valdés Aguilar, A. Stier, W. Liu, L. Bilbro, D. George, N. Bansal, L. Wu, J. Cerne, A. Markelz, S. Oh, et al., Physical review letters 108(8), 87403 (2012)Google Scholar
  10. 10.
    A. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yagvesson, Microwave and Guided Wave Letters, IEEE 10(7), 264 (2000)Google Scholar
  11. 11.
    J. Corson, R. Mallozzi, J. Orenstein, J. Eckstein, I. Bozovic, Nature 398(6724), 221 (1999)Google Scholar
  12. 12.
    L. Bilbro, R. Aguilar, G. Logvenov, O. Pelleg, I. Boović, N. Armitage, Nature Physics 7(4), 298 (2011)Google Scholar
  13. 13.
    S. Wang, B. Ferguson, D. Abbott, X. Zhang, Journal of Biological Physics 29(2), 247 (2003)Google Scholar
  14. 14.
    M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Büttner, Applied optics 41(10), 2074 (2002)Google Scholar
  15. 15.
    B. Hu, M. Nuss, Optics letters 20(16), 1716 (1995)Google Scholar
  16. 16.
    J. Johnson, T. Dorney, D. Mittleman, Applied Physics Letters 78(6), 835 (2001)Google Scholar
  17. 17.
    S. Wang, B. Ferguson, D. Abbott, X. Zhang, Journal of Biological Physics 29(2), 247 (2003)Google Scholar
  18. 18.
    D. Mittleman, S. Hunsche, L. Boivin, M. Nuss, Optics letters 22(12), 904 (1997)Google Scholar
  19. 19.
    S. Nashima, O. Morikawa, K. Takata, M. Hangyo, Appl. Phys. Lett. 79, 3923 (2001)Google Scholar
  20. 20.
    A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, P. Kuzel, Rev. Sci. Instrum. 74, 4711 (2003)Google Scholar
  21. 21.
    L. Thrane, R. Jacobsen, P.U. Jepsen, S. Keiding, Chemical Physics Letters 240(4), 330 (1995)Google Scholar
  22. 22.
    S.C. Howells, L.A Schlie, Applied Physics Letters 69(4), 550 (1996)Google Scholar
  23. 23.
    C. Ronne, L. Thrane, P.O. AAstrand, A. Wallqvist, K.V. Mikkelsen, S.R. Keiding, The Journal of Chemical Physics 107(14), 5319 (1997)Google Scholar
  24. 24.
    J. Van Mechelen, D. Van Der Marel, I. Crassee, T. Kolodiazhnyi, Physical Review Letters 106(21), 217601 (2011)Google Scholar
  25. 25.
    T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A Woollam, M. Schubert, Rev. Sci. Instrum. 81, 023101 (2010)Google Scholar
  26. 26.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th edn., chap. 14Google Scholar
  27. 27.
    D.W. Berreman, J. Opt. Soc. Am. 62(4), 502 (1972)Google Scholar
  28. 28.
    R.W. Collins, Rev. Sci. Instrum. 61, 2029 (1990)Google Scholar
  29. 29.
    G.E. Jellison, F.A. Modine, Appl. Opt. 36, 81848189 (1997)Google Scholar
  30. 30.
    J.M.M. de Nijs, A.H.M. Holtslag, A. Hoeksta, A. van, Silfhout, J. Opt. Soc. Am. A 5, 14661471 (1988)Google Scholar
  31. 31.
    B. Johs, Thin Solid Films 234, 395 (1993)Google Scholar
  32. 32.
    N.V. Nguyen, B.S. Pudliner, I. An, R.W. Collins, J. Opt. Soc. Am. A 8, 919931 (1991)Google Scholar
  33. 33.
    A. Röseler, Infrared spectroscopic ellipsometry (VCH, 1990)Google Scholar
  34. 34.
    F. Ferrieu, Review of Scientific Instruments 60(10), 3212 (1989)Google Scholar
  35. 35.
    J. Bremer, O. Hunderi, K. Fanping, T. Skauli, Applied optics 31(4), 471 (1992)Google Scholar
  36. 36.
    D. Aspnes, Handbook of Optical Constants of Solids 1, 89 (1985)Google Scholar
  37. 37.
    J. Kircher, R. Henn, M. Cardona, P. Richards, G. Williams, JOSA B 14(4), 705 (1997)Google Scholar
  38. 38.
    N. Matsumoto, T. Hosokura, T. Nagashima, M. Hangyo, Optics letters 36(2), 265 (2011)Google Scholar
  39. 39.
    K. Barth, C. Böhme, K. Kamaräs, F. Keilmann, M. Cardona, Thin solid films 234(1), 314 (1993)Google Scholar
  40. 40.
    M. Schubert, T. Hofmann, C. Herzinger, JOSA A 20(2), 347 (2003)Google Scholar
  41. 41.
    T. Hofmann, C. Herzinger, T. Tiwald, J. Woollam, M. Schubert, Applied Physics Letters 95(3), 032102 (2009)Google Scholar
  42. 42.
    T. Hofmann, A. Boosalis, P. Kuhne, C. Herzinger, J. Woollam, D. Gaskill, J. Tedesco, M. Schubert, Applied Physics Letters 98(4), 041906 (2011)Google Scholar
  43. 43.
    T. Hofmann, C. Herzinger, J. edesco, D. Gaskill, J. Woollam, M. Schubert, Thin Solid Films 519(9), 2593 (2011)Google Scholar
  44. 44.
    C. Bernhard, J. Humlìcek, B. Keimer, Thin Solid Films 455, 143 (2004)Google Scholar
  45. 45.
    A. Boris, N. Kovaleva, O. Dolgov, T. Holden, C. Lin, B. Keimer, C. Bernhard, Science 304(5671), 708 (2004)Google Scholar
  46. 46.
    C. Bernhard, T. Holden, J. Humlìcek, D. Munzar, A. Golnik, M. Kläser, T. Wolf, L. Carr, C. Homes, B. Keimer, et al., Solid State Comm. 121(2), 93 (2002)Google Scholar
  47. 47.
    A. Roseler, U. Schade, K. Hoildack, in Infrared and Millimeter Waves and 13th In-ternational Conference on Terahertz Electronics, 2005. IRMMW-THz 2005. The Joint 30th International Conference on, vol. 1 (IEEE, 2005), pp. 190–191Google Scholar
  48. 48.
    T. Hofmann, U. Schade, C. Herzinger, P. Esquinazi, M. Schubert, Review of scientific instruments 77(6), 063902 (2006)Google Scholar
  49. 49.
    T. Hofmann, U. Schade, K. Agarwal, B. Daniel, C. Klingshirn, M. Hetterich, C. Herzinger, M. Schubert, Applied Physics Letters 88(4), 042105 (2006)Google Scholar
  50. 50.
    T.N. Stanislavchuk, T.D. Kang, P.D. Rogers, E.C.Standard, R. Basistyy, A.M. Kotelyanskii, G. Nita, T. Zhou, G.L. Carr, M. Kotelyanskii, A.A Sirenko, Review of Scientific Instruments 84(2), 023901 (2013)Google Scholar
  51. 51.
    P. Rogers, Y. Choi, E. Standard, T. Kang, K. Ahn, A. Dubroka, P. Marsik, C. Wang, C. Bernhard, S. Park, et al., Physical Review B 83(17), 174407 (2011)Google Scholar
  52. 52.
    T. Kang, E. Standard, G. Carr, T. Zhou, M. Kotelyanskii, A. Sirenko, Thin Solid Films 519 (9), 2698 (2011)Google Scholar
  53. 53.
    A. Pimenov, A. Mukhin, V. Ivanov, V. Travkin, A. Balbashov, A. Loidl, Nature Physics 2(2), 97 (2006)Google Scholar
  54. 54.
    A. Sushkov, R. Aguilar, S. Park, S. Cheong, H. Drew, Physical review letters 98(2), 27202 (2007)Google Scholar
  55. 55.
    R. Valdés Aguilar, M .Mostovoy, A. Sushkov, C. Zhang, Y. Choi, S. Cheong, H. Drew, Physical review letters 102(4), 47203 (2009)Google Scholar
  56. 56.
    D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7(10), 2006 (1990)Google Scholar
  57. 57.
    T. Nagashima, M. Hangyo, Applied Physics Letters 79(24), 3917 (2001)Google Scholar
  58. 58.
    R. Shimano, Y. Ino, Y. Svirko, M. Kuwata-Gonokami, Applied physics letters 81(2), 199 (2002)Google Scholar
  59. 59.
    Y. Ino, R. Shimano, Y. Svirko, M. Kuwata-Gonokami, Physical Review B 70(15), 155101 (2004)Google Scholar
  60. 60.
    K. Yatsugi, N. Matsumoto, T. Nagashima, M. Hangyo, Applied Physics Letters 98(21), 212108 (2011)Google Scholar
  61. 61.
    N. Matsumoto, T. Fujii, K .Kageyama, H. Takagi, T. Nagashima, M. Hangyo, Japanese Journal of Applied Physics 48(9), 09KC11 (2009)Google Scholar
  62. 62.
    M. Neshat, N.P. Armitage, Optics Express 20(27), 29063 (2012)Google Scholar
  63. 63.
    C.J. Hensley, M.A. Foster, B. Shim, A.L. Gaeta, in Proceedings of Lasers and Electro-Optics (San Jose, Calif., 2008), p. JFG1Google Scholar
  64. 64.
    M. van Exter, D. Grischkowsky, Applied Physics Letters 56(17), 1694 (1990)Google Scholar
  65. 65.
    M. Neshat, L. Wu, N.P. Armitage, to be submitted (2013)Google Scholar
  66. 66.
    L. Wu, M. Neshat, S. Koohpayeh, N.P. Armitage, to be submitted (2013)Google Scholar
  67. 67.
    E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, C. Jagadish, Applied Physics Letters 86(25), 254102 (2005)Google Scholar
  68. 68.
    C. Morris, R. Aguilar, A. Stier, N. Armitage, Optics Express 20(11), 12303 (2012)Google Scholar
  69. 69.
    D. George, A. Stier, C. Ellis, B. McCombe, J. Černe, A. Markelz, JOSA B 29(6), 1406 (2012)Google Scholar
  70. 70.
    D. Aschaffenburg, M. Williams, D. Talbayev, D. Santavicca, D. Prober, C. Schmuttenmaer, Applied Physics Letters 100(24), 241114 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of TehranTehranIran
  2. 2.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations