Review of Anisotropic Terahertz Material Response

  • Takashi Arikawa
  • Qi Zhang
  • Lei Ren
  • Alexey A. Belyanin
  • Junichiro Kono


Anisotropy is ubiquitous in solids and enhanced in low-dimensional materials. In response to an electromagnetic wave, anisotropic absorptive and refractive properties result in dichroic and birefringent optical phenomena both in the linear and nonlinear optics regimes. Such material properties have led to a diverse array of useful polarization components in the visible and near-infrared, but mature technology is non-existent in the terahertz (THz). Here, we review several novel types of anisotropic material responses observed in the THz frequency range, including both linear and circular anisotropy, which have long-term implications for the development of THz polarization optics. We start with the extreme linear anisotropy of macroscopically aligned carbon nanotubes, arising from their intrinsically anisotropic dynamic conductivity. Magnetically induced anisotropy will then be reviewed, including the giant Faraday effects observed in semiconductors, semimetals, and two-dimensional electron systems.


Anisotropy Terahertz Nanotube Faraday effect Cyclotron resonance 


  1. 1.
    W. F. Magie, A Source Book in Physics (McGraw-Hill, New York, 1935).Google Scholar
  2. 2.
    D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).CrossRefGoogle Scholar
  3. 3.
    J. B. Masson and G. Gallot, Opt. Lett. 31, 265 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, Opt. Express 20, 28249 (2012).CrossRefGoogle Scholar
  5. 5.
    H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, Opt. Express 20, 11899 (2012).CrossRefGoogle Scholar
  6. 6.
    C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, Opt. Lett. 31, 1112 (2006).CrossRefGoogle Scholar
  7. 7.
    H.-T. Chen, J. F. O’Hara, a. K. Azad, and A. J. Taylor, Laser & Photon. Rev. 5, 513 (2011).Google Scholar
  8. 8.
    B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Reid and R. Fedosejevs, Appl. Opt. 45, 2766 (2006).CrossRefGoogle Scholar
  10. 10.
    E. D. Palik and J. K. Furdyna, Rep. Prog. Phys. 33, 1193 (1970).CrossRefGoogle Scholar
  11. 11.
    D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, Appl. Phys. Lett. 71, 16 (1997).CrossRefGoogle Scholar
  12. 12.
    O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 100, 033105 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Shimano, Y. Ino, Y. P. Svirko, and M. Kuwata-Gonokami, Appl. Phys. Lett. 81, 199 (2002).CrossRefGoogle Scholar
  14. 14.
    L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, Nano Lett. 9, 2610 (2009).CrossRefGoogle Scholar
  15. 15.
    L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, Nano Lett. 12, 787 (2012).CrossRefGoogle Scholar
  16. 16.
    L. Ren, Q. Zhang, and S. Nanot, I. Kawayama, M. Tonouchi, and J. Kono, J. Infrared Milli Terahz Waves 33, 846 (2012).Google Scholar
  17. 17.
    L. Ren, Q. Zhang, C. L. Pint, A. K. Wójcik, M. Bunney, T. Arikawa, I. Kawayama, M. Tonouchi, R. H. Hauge, A. A. Belyanin, and J. Kono, Phys. Rev. B 87, 161401 (2013).CrossRefGoogle Scholar
  18. 18.
    S. Nanot, E. H. Hároz, J.-H. Kim, R. H. Hauge, and J. Kono, Adv. Mat. 24, 4977 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Kyoung, E.Y. Jang, M.D. Lima, H.R. Park, R.O. Robls, X. Lepro, Y.H. Kim, R.H. Baughman, and D.S. Kim, Nano Lett. 11, 4227 (2011).CrossRefGoogle Scholar
  20. 20.
    T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, Opt. Express 20, 19484 (2012).CrossRefGoogle Scholar
  21. 21.
    A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 106, 107404 (2011).CrossRefGoogle Scholar
  22. 22.
    I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, Nat. Phys. 7, 48 (2010).CrossRefGoogle Scholar
  23. 23.
    Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, and R. Shimano, Phys. Rev. Lett. 104, 256802 (2010).CrossRefGoogle Scholar
  24. 24.
    T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, Phys. Rev. B 84, 241307(R) (2011).CrossRefGoogle Scholar
  25. 25.
    A.Yariv, Quantum Electronics 3rd ed. (JOHN WILEY & SONS, 1988).Google Scholar
  26. 26.
    L.D. Landau, L.P. Pitaevskii, and E.M. Lifshitz, Electrodynamics of continuous media, (Elsevier, 1984).Google Scholar
  27. 27.
    D. M. Mittleman, ed., Sensing with Terahertz Radiation (Springer, 2003).Google Scholar
  28. 28.
    E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).CrossRefGoogle Scholar
  29. 29.
    M. Tani, Y. Hirota, C. T. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, Int. J. Infrared and Millimetre Waves 27, 531 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, Optics Express 14, 4486 (2006).CrossRefGoogle Scholar
  31. 31.
    H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, Optics Express 15, 11650 (2007).CrossRefGoogle Scholar
  32. 32.
    E. Castro-Camus, J. Infrared Milli Terahz Waves 33, 418 (2012).Google Scholar
  33. 33.
    C. M. Morris, R. Valdés Aguilar, A. V. Stier, and N. P. Armitage, Opt. Express 20, 12303 (2012).CrossRefGoogle Scholar
  34. 34.
    Tae-In Jeon, Keun-Ju Kim, Chul Kang, In Hee Maeng, Joo-Hiuk Son, Kay Hyeok An, Ji Yeong Lee, and Young Hee Lee, J. Appl. Phys. 95, 5736 (2004).Google Scholar
  35. 35.
    X. L. Xu, P. Parkinson, K.-C. Chuang, M. B. Johnston, R. J. Nicholas, and L. M. Herz, Phys. Rev. B 82, 085441 (2010).CrossRefGoogle Scholar
  36. 36.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus (eds.), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, 2008).Google Scholar
  37. 37.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker, Nature 386, 474 (1997).CrossRefGoogle Scholar
  38. 38.
    A. Srivastava, H. Htoon, V.I. Klimov, and J. Kono, Phys. Rev. Lett. 101, 087402 (2008).CrossRefGoogle Scholar
  39. 39.
    Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, and S. Maruyama, Chem. Phys. Lett. 385, 298 (2004).CrossRefGoogle Scholar
  40. 40.
    K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Science 206, 1362 (2004).CrossRefGoogle Scholar
  41. 41.
    G. Eres, A. A. Kinkhabwala, H. Cui, D. B. Geohegan, A. A. Puretzky, D. H. Lowndes, J. Phys. Chem. B 109, 16684 (2005).CrossRefGoogle Scholar
  42. 42.
    Y.-Q. Xu, E. Flor, M. J. Kim, B. Hamadani, H. Schmidt, R. E. Smalley, and R. H. Hauge, J. Am. Chem. Soc. 128, 6560 (2006).CrossRefGoogle Scholar
  43. 43.
    C. L. Pint, S. T. Pheasant, K. Coulter, M. Pasquali, H. K. Schmidt, and R. H. Hauge, Nano Lett. 8, 1879 (2008).CrossRefGoogle Scholar
  44. 44.
    C. L. Pint, N. Nicholas, S. T. Pheasant, J. G. Duque, A. N. G. Parra-Vasquez, G. Eres, M. Pasquali, and R. H. Hauge, J. Phys. Chem. C 112, 14041 (2008).CrossRefGoogle Scholar
  45. 45.
    C. L. Pint, Y.-Q. Xu, S. Moghazy, T. Cherukuri, N. T. Alvarez, E. H. Hároz, S. Mahzooni, S. K. Doorn, J. Kono, M. Pasquali, and R. H. Hauge, ACS Nano 4, 1131 (2010).CrossRefGoogle Scholar
  46. 46.
    L. G. Booshehri, C. L. Pint, G. D. Sanders, L. Ren, C. Sun, E. H. Hároz, J.-H. Kim, K.-J. Yee, Y.-S. Lim, R. H. Hauge, C. J. Stanton, and J. Kono, Phys. Rev. B 83 , 195411 (2011).CrossRefGoogle Scholar
  47. 47.
    D. J. Hilton, T. Arikawa, and J. Kono, "Cyclotron Resonance," in: Characterization of Materials, Second Edition, edited by E. N. Kaufmann (John Wiley & Sons, New York, 2012)Google Scholar
  48. 48.
    J. Furdyna, Solid State Commun. 5, 539 (1967).CrossRefGoogle Scholar
  49. 49.
    X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, Nat. Phys. 6, 126 (2010).CrossRefGoogle Scholar
  50. 50.
    H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photon. Rev. 1, 349 (2007).CrossRefGoogle Scholar
  51. 51.
    P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, J. Opt. Soc. Am. B 18, 313 (2001).CrossRefGoogle Scholar
  52. 52.
    D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin, Opt. Express 20, 5993 (2012).CrossRefGoogle Scholar
  53. 53.
    N. Orlowski, J. Augustin, Z. Gołacki, C. Janowitz, and R. Manzke, Phys. Rev. B 61, R5058 (2000).CrossRefGoogle Scholar
  54. 54.
    M. Suzuki, K. Fujii, T. Ohyama, H. Kobori, and N. Kotera, J. Phys. Soc. Jpn. 72, 3276 (2003).CrossRefGoogle Scholar
  55. 55.
    H. Sumikura, T. Nagashima, H. Kitahara, and M. Hangyo, Jpn. J. Appl. Phys. 46, 1739 (2007).CrossRefGoogle Scholar
  56. 56.
    X. Wang, D. J. Hilton, L. Ren, D. M. Mittleman, J. Kono, and J. L. Reno, Opt. Lett. 32, 1845 (2007).CrossRefGoogle Scholar
  57. 57.
    X. Wang, D. J. Hilton, J. L. Reno, D. M. Mittleman, and J. Kono, Opt. Express 18, 12354 (2010).CrossRefGoogle Scholar
  58. 58.
    T. Morimoto, Y. Hatsugai, and H. Aoki, Phys. Rev. Lett. 103, 116803 (2009).CrossRefGoogle Scholar
  59. 59.
    B. D. McCombe and R. J. Wagner, in Advances in Electronics and Electron Physics, edited by L. Marton, Vol. 37 (Academic, New York, 1975).Google Scholar
  60. 60.
    W. Kohn, Phys. Rev. 123, 1242 (1961).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Takashi Arikawa
    • 1
    • 3
  • Qi Zhang
    • 1
  • Lei Ren
    • 1
  • Alexey A. Belyanin
    • 2
  • Junichiro Kono
    • 1
  1. 1.Department of Electrical & Computer EngineeringRice UniversityHoustonUSA
  2. 2.Department of PhysicsTexas A&M UniversityCollege StationUSA
  3. 3.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations