Skip to main content
Log in

Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Low-dimensional carbon nanostructures, such as single-wall carbon nanotubes (SWCNTs) and graphene, offer new opportunities for terahertz science and technology. Being zero-gap systems with a linear, photon-like energy dispersion, metallic SWCNTs and graphene exhibit a variety of extraordinary properties. Their DC and linear electrical properties have been extensively studied in the last decade, but their unusual finite-frequency, nonlinear, and/or non-equilibrium properties are largely unexplored, although they are predicted to be useful for new terahertz device applications. Terahertz dynamic conductivity measurements allow us to probe the dynamics of such photon-like electrons, or massless Dirac fermions. Here, we use terahertz time-domain spectroscopy and Fourier transform infrared spectroscopy to investigate terahertz conductivities of one-dimensional and two-dimensional electrons, respectively, in films of highly aligned SWCNTs and gated large-area graphene. In SWCNTs, we observe extremely anisotropic terahertz conductivities, promising for terahertz polarizer applications. In graphene, we demonstrate that terahertz and infrared properties sensitively change with the Fermi energy, which can be controlled by electrical gating and thermal annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  3. A. Oberlin, M. Endo, T. Koyama, J. Crystal Growth 32, 335 (1976)

    Article  Google Scholar 

  4. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  Google Scholar 

  5. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993)

    Article  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  7. M.E. Portnoi, O.V. Kibis, M. Rosenau da Costa, Proc. SPIE 6328, 632805 (2006)

    Article  Google Scholar 

  8. V. Ryzhii, Jpn. J. Appl. Phys. 45, L923 (2006)

    Article  Google Scholar 

  9. O.V. Kibis, M. Rosenau da Costa, M.E. Portnoi, Nano Lett. 7, 3414 (2007)

    Article  Google Scholar 

  10. S.A. Mikhailov, K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008)

    Article  Google Scholar 

  11. S.A. Mikhailov, Microelectron. J. 40, 712 (2009)

    Article  Google Scholar 

  12. V.A. Sablikov, B.S. Shchamkhalova, JETP Lett. 66, 41 (1997)

    Article  Google Scholar 

  13. A. Rosch, N. Andrei, Phys. Rev. Lett. 85, 1092 (2000)

    Article  Google Scholar 

  14. T. Ando, J. Phys. Soc. Jpn. 71, 2505 (2002)

    Article  Google Scholar 

  15. P.J. Burke, IEEE Trans. Nanotechnol. 1, 129 (2002)

    Article  Google Scholar 

  16. M. Pustilnik, M. Khodas, A. Kamenev, L.I. Glazman, Phys. Rev. Lett. 96, 196405 (2006)

    Article  Google Scholar 

  17. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  18. Q. Si, S. Rabello, K. Ingersent, J.L. Smith, Nature 413, 804 (2001)

    Article  Google Scholar 

  19. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  20. F. Bommeli, L. Degiorgi, P. Wachter, W.S. Bacsa, W.A. de Heer, L. Forro, Solid State Commun. 99, 513 (1996)

    Article  Google Scholar 

  21. A. Ugawa, A.G. Rinzler, D.B. Tanner, Phys. Rev. B 60, R11305 (1999)

    Article  Google Scholar 

  22. M.E. Itkis, S. Niyogi, M.E. Meng, M.A. Hamon, H. Hu, R.C. Haddon, Nano Lett. 2, 155 (2002)

    Article  Google Scholar 

  23. T.I. Jeon, K.J. Kim, C. Kang, S.J. Oh, J.H. Son, K.H. An, D.J. Bae, Y.H. Lee, Appl. Phys. Lett. 80, 3403 (2002)

    Article  Google Scholar 

  24. T.I. Jeon, K.J. Kim, C. Kang, I.H. Maeng, J.H. Son, K.H. An, J.Y. Lee, Y.H. Lee, J. Appl. Phys. 95, 5736 (2004)

    Article  Google Scholar 

  25. T.I. Jeon, J.H. Son, K.H. An, Y.H. Lee, Y.S. Lee, J. Appl. Phys. 98, 034316 (2005)

    Article  Google Scholar 

  26. N. Akima, Y. Iwasa, S. Brown, A.M. Barbour, J. Cao, J.L. Musfeldt, H. Matsui, N. Toyota, M. Shiraishi, H. Shimoda, O. Zhou, Adv. Mater. 18, 1166 (2006)

    Article  Google Scholar 

  27. F. Borondics, K. Kamarás, M. Nikolou, D.B. Tanner, Z.H. Chen, A.G. Rinzler, Phys. Rev. B 74, 045431 (2006)

    Article  Google Scholar 

  28. H. Nishimura, N. Minami, R. Shimano, Appl. Phys. Lett. 91, 011108 (2007)

    Article  Google Scholar 

  29. T. Kampfrath, K. von Volkmann, C.M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, L. Perfetti, Phys. Rev. Lett. 101(26), 267403 (2008)

    Article  Google Scholar 

  30. T. Nakanishi, T. Ando, J. Phys. Soc. Jpn. 78, 114708 (2009)

    Article  Google Scholar 

  31. G.Y. Slepyan, M.V. Shuba, S.A. Maksimenko, C. Thomsen, A. Lakhtakia, Phys. Rev. B 81, 205423 (2010)

    Article  Google Scholar 

  32. N.H. Shon, T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998)

    Article  Google Scholar 

  33. Y. Zheng, T. Ando, Phys. Rev. B 65, 245420 (2002)

    Article  Google Scholar 

  34. T. Ando, Y. Zheng, H. Suzuura, J. Phys. Soc. Jpn. 71, 1318 (2002)

    Article  Google Scholar 

  35. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73, 125411 (2006)

    Article  Google Scholar 

  36. V.P. Gusynin, S.G. Sharapov, Phys. Rev. B 73, 245411 (2006)

    Article  Google Scholar 

  37. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. Lett. 96, 256802 (2006)

    Article  Google Scholar 

  38. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. Lett. 98, 157402 (2007)

    Article  Google Scholar 

  39. S. Ryu, C. Mudry, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 75, 205344 (2007)

    Article  Google Scholar 

  40. D.S.L. Abergel, V.I. Fal’ko, Phys. Rev. B 75, 155430 (2007)

    Article  Google Scholar 

  41. E.G. Mishchenko, Phys. Rev. Lett. 98, 216801 (2007)

    Article  Google Scholar 

  42. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. B 75, 165407 (2007)

    Article  Google Scholar 

  43. V. Ryzhii, M. Ryzhii, T. Otsuji, J. Appl. Phys. 101, 083114 (2007)

    Article  Google Scholar 

  44. L.A. Falkovsky, A.A. Varlamov, Eur. Phys. J. B 56, 281 (2007)

    Article  Google Scholar 

  45. S.A. Mikhailov, K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007)

    Article  Google Scholar 

  46. S.A. Mikhailov, Europhys. Lett. 79, 27002 (2007)

    Article  Google Scholar 

  47. L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007)

    Article  Google Scholar 

  48. D.E. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007)

    Article  Google Scholar 

  49. I.F. Herbut, V. Juričić, O. Vafek, Phys. Rev. Lett. 100, 046403 (2008)

    Article  Google Scholar 

  50. M. Koshino, T. Ando, Phys. Rev. B 77, 115313 (2008)

    Article  Google Scholar 

  51. E.G. Mishchenko, Europhys. Lett. 83, 17005 (2008)

    Article  Google Scholar 

  52. M. Lewkowicz, B. Rosenstein, Phys. Rev. Lett. 102, 106802 (2009)

    Article  Google Scholar 

  53. V. Ryzhii, M. Ryzhii, V. Mitin, M.S. Shur, Appl. Phys. Exp. 2, 034503 (2009)

    Article  Google Scholar 

  54. S.A. Mikhailov, Phys. Rev. B 79, 241309(R) (2009)

    Article  Google Scholar 

  55. P. Ingenhoven, J.Z. Bernád, U. Zülicke, R. Egger, Phys. Rev. B 81, 035421 (2010)

    Article  Google Scholar 

  56. V. Juričić, O. Vafek, I.F. Herbut, Phys. Rev. B 82, 235402 (2010)

    Article  Google Scholar 

  57. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  Google Scholar 

  58. K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101, 196405 (2008)

    Article  Google Scholar 

  59. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Nature Phys. 4, 532 (2008)

    Article  Google Scholar 

  60. H. Choi, F. Borondics, D.A. Siegel, S.Y. Zhou, M.C. Martin, A. Lanzara, R.A. Kaindl, Appl. Phys. Lett. 94, 172102 (2009)

    Article  Google Scholar 

  61. J. Horng, C.F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H.A. Bechtel, M. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Phys. Rev. B 83, 165113 (2011)

    Article  Google Scholar 

  62. W. Liu, R.V. Aguilar, Y. Hao, R.S. Ruoff, N.P. Armitage, J. Appl. Phys. 110, 083510 (2011)

    Article  Google Scholar 

  63. H. Yan, F. Xia, W. Zhu, M. Freitag, C. Dimitrakopoulos, A.A. Bol, G. Tulevski, P. Avouris, ACS Nano 5, 9854 (2011)

    Article  Google Scholar 

  64. I. Maeng, S. Lim, S.J. Chae, Y.H. Lee, H. Choi, J.H. Son, Nano Lett. 12, 551 (2012)

    Article  Google Scholar 

  65. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Nat. Commun. 3, 780 (2012)

    Article  Google Scholar 

  66. M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Phys. Rev. Lett. 97, 266405 (2006)

    Article  Google Scholar 

  67. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Phys. Rev. Lett. 98, 197403 (2007)

    Article  Google Scholar 

  68. R.S. Deacon, K.C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Phys. Rev. B 76, 081406 (2007)

    Article  Google Scholar 

  69. E.A. Henriksen, Z. Jiang, L.C. Tung, M.E. Schwartz, M. Takita, Y.J. Wang, P. Kim, H.L. Stormer, Phys. Rev. Lett. 100, 087403 (2008)

    Article  Google Scholar 

  70. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Phys. Rev. Lett. 101, 267601 (2008)

    Article  Google Scholar 

  71. P. Neugebauer, M. Orlita, C. Faugeras, A.L. Barra, M. Potemski, Phys. Rev. Lett. 103, 136403 (2009)

    Article  Google Scholar 

  72. E.A. Henriksen, P. Cadden-Zimansky, Z. Jiang, Z.Q. Li, L.C. Tung, M.E. Schwartz, M. Takita, Y.J. Wang, P. Kim, H.L. Stormer, Phys. Rev. Lett. 104, 067404 (2010)

    Article  Google Scholar 

  73. I. Crassee, J. Levallois, A.L. Walter, M. Ostler, A.B.E. Rotenberg, T. Seyller, D. van der Marel, A.B. Kuzmenko, Nature Phys. 7, 48 (2011)

    Article  Google Scholar 

  74. A.M. Witowski, M. Orlita, R. Stȩpniewski, A. Wysmołek, J.M. Baranowski, W. Strupiński, C. Faugeras, G. Martinez, M. Potemski, Phys. Rev. B 82, 165305 (2010)

    Article  Google Scholar 

  75. M. Orlita, C. Faugeras, R. Grill, A. Wysmolek, W. Strupinski, C. Berger, W.A. de Heer, G. Martinez, M. Potemski, Phys. Rev. Lett. 107, 216603 (2011)

    Article  Google Scholar 

  76. I. Crassee, J. Levallois, D. van der Marel, A.L. Walter, T. Seyller, A.B. Kuzmenko, Phys. Rev. B 84, 035103 (2011)

    Article  Google Scholar 

  77. L.G. Booshehri, C.H. Mielke, D.G. Rickel, S.A. Crooker, Q. Zhang, L. Ren, E.H. Hároz, A. Rustagi, C.J. Stanton, Z. Jin, Z. Sun, Z. Yan, J.M. Tour, J. Kono, Phys. Rev. B 85, 205407 (2012)

    Article  Google Scholar 

  78. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. No. 18 in Topics in Applied Physics (Springer, Berlin, 2001)

    Google Scholar 

  79. M.J. O’Connell (ed.), Carbon Nanotubes: Properties and Applications (CRC Press, Taylor & Francis Group, Boca Raton, 2006)

  80. A. Jorio, G. Dresselhaus, M.S. Dresselhaus (eds.), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, 2008)

    Google Scholar 

  81. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)

    Article  Google Scholar 

  82. A. Srivastava, H. Htoon, V.I. Klimov, J. Kono, Phys. Rev. Lett. 101, 087402 (2008)

    Article  Google Scholar 

  83. M.F. Islam, D.E. Milkie, C.L. Kane, A.G. Yodh, J.M. Kikkawa, Phys. Rev. Lett. 93, 037404 (2004)

    Article  Google Scholar 

  84. S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, M.S. Strano, R.H. Hauge, R.E. Smalley, X. Wei, Science 304, 1129 (2004)

    Article  Google Scholar 

  85. S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, R.H. Hauge, R.E. Smalley, X. Wei, Nano Lett. 4, 2219 (2004)

    Article  Google Scholar 

  86. M.F. Islam, D.E. Milkie, O.N. Torrens, A.G. Yodh, J.M. Kikkawa, Phys. Rev. B 71, 201401(R) (2005)

    Article  Google Scholar 

  87. O.N. Torrens, D.E. Milkie, H.Y. Ban, M. Zheng, G.B. Onoa, T.D. Gierke, J.M. Kikkawa, J. Am. Chem. Soc. 129, 252 (2007)

    Article  Google Scholar 

  88. J. Shaver, A.N.G. Parra-Vasquez, S. Hansel, O. Portugall, C.H. Mielke, M. von Ortenberg, R.H. Hauge, M. Pasquali, J. Kono, ACS Nano 3, 131 (2009)

    Article  Google Scholar 

  89. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 62, 2470 (1993)

    Article  Google Scholar 

  90. J.P. Lu, Phys. Rev. Lett. 74, 1123 (1995)

    Article  Google Scholar 

  91. M.A.L. Marques, M. d’Avezac, F. Mauri, Phys. Rev. B 73, 125433 (2006)

    Article  Google Scholar 

  92. Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama, Phys. Rev. Lett. 94, 087402 (2005)

    Article  Google Scholar 

  93. J.A. Fagan, J.R. Simpson, B.J. Landi, L.J. Richter, I. Mandelbaum, V. Bajpai, D.L. Ho, R. Raffaelle, A.R. Walker, B.J. Bauer, E.K. Hobbie, Phys. Rev. Lett. 98, 147402 (2007)

    Article  Google Scholar 

  94. J. Shaver, S.A. Crooker, J.A. Fagan, E.K. Hobbie, N. Ubrig, O. Portugall, V. Perebeinos, P. Avouris, J. Kono, Phys. Rev. B 78, 081402 (2008)

    Article  Google Scholar 

  95. L. Ren, C.L. Pint, L.G. Booshehri, W.D. Rice, X. Wang, D.J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono, Nano Lett. 9, 2610 (2009)

    Article  Google Scholar 

  96. L. Ren, C.L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono, Nano Lett. 12, 787 (2012)

    Article  Google Scholar 

  97. A. Rodger, B. Nordén, Circular Dichroism and Linear Dichroism (Oxford University Press, 1997)

  98. J. Kyoung, E.Y. Jang, M.D. Lima, H.R. Park, R.O. Robls, X. Lepro, Y.H. Kim, R.H. Baughman, D.S. Kim, Nano Lett. 11, 4227 (2011)

    Article  Google Scholar 

  99. C.L. Pint, Y.Q. Xu, S. Moghazy, T. Cherukuri, N.T. Alvarez, E.H. Hároz, S. Mahzooni, S.K. Doorn, J. Kono, M. Pasquali, R.H. Hauge, ACS Nano 4, 1131 (2010)

    Article  Google Scholar 

  100. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  101. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  Google Scholar 

  102. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Science 320, 206 (2008)

    Article  Google Scholar 

  103. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Nat. Mater. 6, 198 (2007)

    Article  Google Scholar 

  104. J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007)

    Article  Google Scholar 

  105. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J.M. Tour, J. Kono, Nano Lett. (2012). doi:10.1021/nl301496r

  106. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature 468, 549 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (through Grant Nos. OISE-0530220 and OISE-0968405), the Department of Energy (through Grant No. DEFG02-06ER46308), and the Robert A. Welch Foundation (through Grant No. C-1509). We thank Cary L. Pint and Robert H. Hauge for providing us with the aligned carbon nanotube films and Jun Yao, Zhengzong Sun, Zheng Yan, Zhong Jin, and James M. Tour for providing us with the large-area graphene samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Kono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, L., Zhang, Q., Nanot, S. et al. Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials. J Infrared Milli Terahz Waves 33, 846–860 (2012). https://doi.org/10.1007/s10762-012-9916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9916-8

Keywords

Navigation