Optically- and Electrically-Stimulated Terahertz Radiation Emission from Indium Nitride

  • Ingrid Wilke
  • Yujie J. Ding
  • Tatiana V. Shubina
Invited Review Article

Abstract

Indium nitride is a novel narrow band gap semiconductor. The material is a potential strong source of terahertz frequency electromagnetic radiation with applications in time-domain terahertz spectroscopy and imaging systems. This article reviews recent experimental research on terahertz emission from the binary compound semiconductor indium nitride excited by near-infrared laser beams or microseconds electrical pulses. Advantages of indium nitride as terahertz radiation source material are discussed. It is demonstrated that different mechanisms contribute to the emission of terahertz radiation from indium nitride. The emission of up to 2.4 μW of THz radiation power is observed when InN is excited with near-infrared femtosecond laser pulses at an average power of 1 W.

Keywords

High-speed optical techniques III-V semiconductors Narrow band gap semiconductors Indium compounds Terahertz wave generation Photoconductivity Rectification Polaritons Surface plasmon 

References

  1. 1.
    V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Status Solidi. B. 229, R1 (2002).Google Scholar
  2. 2.
    J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).CrossRefGoogle Scholar
  3. 3.
    R. Ascazubi, I. Wilke, K. Denniston, H. Lu, W. J. Schaff, Appl. Phys. Lett. 84, 4810 (2004).CrossRefGoogle Scholar
  4. 4.
    G. Chern, E. Readinger, H. Shen, M. Wraback, C. Gallinat, G. Koblmueller, J. Speck, Appl. Phys. Lett. 89, 141115 (2006).CrossRefGoogle Scholar
  5. 5.
    B. Pradarutti, G. Matthaeus, C. Brueckner, S. Riehemann, G. Notni, S. Nolte, V. Cimalla, V. Lebedev, O. Ambacher, A. Tuennermann, Proc. SPIE Vol. 6194, 619401 (2006).Google Scholar
  6. 6.
    P. H. Siegel, IEEE T. Microw. Theory, 50, 910 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Tonouchi, Nat. Photonics 1, 97 (2007).CrossRefGoogle Scholar
  8. 8.
    I.Wilke, in Encyclopedia of Analytical Chemistry, ed. by R. A. Meyers, (John Wiley & Sons, Ltd., Hoboken, NJ, 2008), vol. S1-S3, p.1318.Google Scholar
  9. 9.
    R. A. Cheville, D. Grischkowsky, J. Opt. Soc. Am. B, 16, 317 (1999).CrossRefGoogle Scholar
  10. 10.
    M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, J. Phys. Chem. 106, 7146 (2002).CrossRefGoogle Scholar
  11. 11.
    D. M. Mittleman, R. H. Jacobsen, M. C. Nuss IEEE J. Selec Topics Quant Electron 2, 679 (1996)CrossRefGoogle Scholar
  12. 12.
    D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M.Koch, Appl. Phys. B 68, 1085 (1999).CrossRefGoogle Scholar
  13. 13.
    J. F Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semicond Sci Technol 20, S266 (2005).CrossRefGoogle Scholar
  14. 14.
    A. J. Fitzgerald, B. E. Cole, P. F. Taday, J. Pharm. Sci. 94, 177 (2005).CrossRefGoogle Scholar
  15. 15.
    T. Kleine-Ostmann, T. Nagatsuma, J Infrared Milli Terah Waves, 32, 143 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Klatt, R. Gebs, C. Janke, T. Dekorsy, A. Bartels, Optics Express 17, 22847 (2009).CrossRefGoogle Scholar
  17. 17.
    Y. Kim, D.-S.Yee, Optics Letters 35, 3715 (2010).CrossRefGoogle Scholar
  18. 18.
    R. A. Cheville, in Terahertz Spectroscopy – Principles and Applications, ed. S. L. Dexheimer, (Taylor & Francis, LLC, Boca Raton, 2008), p. 1.Google Scholar
  19. 19.
    I. Wilke, S. Sengupta, in Terahertz Spectroscopy – Principles and Applications, ed. S. L. Dexheimer, (Taylor & Francis, LLC, Boca Raton, 2008) p. 41.Google Scholar
  20. 20.
    B. Ferguson, X.-C. Zhang, Nat Materials 1, 26 (2002).CrossRefGoogle Scholar
  21. 21.
    A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).CrossRefGoogle Scholar
  22. 22.
    P. Rinde, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B. 77, 075202 (2008).CrossRefGoogle Scholar
  23. 23.
    J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W.J. Schaff, W. K. Metzger, S. Kurtz, J. Appl. Phys. 94, 6477 (2003).CrossRefGoogle Scholar
  24. 24.
    I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).CrossRefGoogle Scholar
  25. 25.
    R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Phys. Rev. Lett. 96, 125505, (2006).CrossRefGoogle Scholar
  26. 26.
    P. A. Anderson, C. H. Swartz, D. Carder, R. J. Reeves, S. M. Durbin, S. Chandril, T. H. Myers, Appl. Phys. Lett. 89, 184104 (2006).CrossRefGoogle Scholar
  27. 27.
    V. Cimalla, M. Niebelschütz, G. Ecke, O. Ambacher, R. Goldhahn, H. Lu, W. J. Schaff, Phys. Status Solidi C 3, 1721 (2006).CrossRefGoogle Scholar
  28. 28.
    P. D. C. King, T. D. Veal, P. H. Jefferson, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. B 75, 115312 (2007).CrossRefGoogle Scholar
  29. 29.
    I. Wilke, R. Ascazubi, H. Lu, W. J. Schaff, Appl. Phys. Lett. 93, 221113 (2008).CrossRefGoogle Scholar
  30. 30.
    J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, R. Jakiela, Appl. Phys. Lett. 84, 2805 (2004).CrossRefGoogle Scholar
  31. 31.
    R. Ascazubi, I. Wilke, S. Cho, H. Lu, W. J. Schaff, Appl. Phys. Lett. 93, 221113 (2008).CrossRefGoogle Scholar
  32. 32.
    V. Cimalla, B. Pradarutti, G. Matthaeus, C. Brueckner, S. Riehemann, G. Notni, S. Nolte, A. Tuennermann, V. Lebedev, O. Ambacher, Phys. Stat. Sol. B 244, 1829 (2007).CrossRefGoogle Scholar
  33. 33.
    C.-K. Sun, J.-C. Liang, X.-Y. Yu, Phys. Rev. Lett. 84, 179–182 (2000).CrossRefGoogle Scholar
  34. 34.
    P. van Capel, D. Turchinovich, H. Porte, S. Lahmann, U. Rossow, A. Hangleiter, J. I. Dijkhuis, Phys. Rev. B 84, 085317 (2011).CrossRefGoogle Scholar
  35. 35.
    K.-H. Lin, G.-W. Chern, Y.-K. Huang, C.-K. Sun, Phys. Rev. B 70, 073307 (2004).CrossRefGoogle Scholar
  36. 36.
    A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, W. H. Knox, Phys. Rev. B 61, 16642 (2000)CrossRefGoogle Scholar
  37. 37.
    S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, A. F. J. Levi, Phys. Rev. Lett. 68, 102–105 (1992).CrossRefGoogle Scholar
  38. 38.
    P. C. M. Planken, M. C. Nuss, W. H. Knox, D. A. Miller, K. W. Goossen, Appl. Phys. Lett. 61, 2009–2011 (1992).CrossRefGoogle Scholar
  39. 39.
    R. Ascazubi, I. Wilke, K. J. Kim, Partha Dutta, Phys. Rev. B 74, 075323 (2006).CrossRefGoogle Scholar
  40. 40.
    R. Ascazubi, C. Shneider, Ingrid Wilke, R. Pino, P. Dutta, Phys. Rev. B, 72, 045328 (2005).CrossRefGoogle Scholar
  41. 41.
    Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, I. Wilke, Phys. Rev. B 78, 035201 (2008).CrossRefGoogle Scholar
  42. 42.
    T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, H. Kurz, Phys. Rev. B 53, 4005 (1996)CrossRefGoogle Scholar
  43. 43.
    H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, C.-L. Pan, Appl. Phys. Lett. 91, 132108 (2007).CrossRefGoogle Scholar
  44. 44.
    V. M. Polyakov, F. Schwierz, Semicond Sci Technol 22, 1016 (2007).CrossRefGoogle Scholar
  45. 45.
    H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, S. Gwo, Appl. Phys. Lett. 92, 102103 (2008).CrossRefGoogle Scholar
  46. 46.
    H. Ahn, Y. Yi-Jou, H. Yu-Liang, S. Gwo, Appl. Phys. Express 3, 122105 (2010).CrossRefGoogle Scholar
  47. 47.
    X. Q. Wang, G. Z. Zhao, Q. Zhang, Y. Ishitani, A. Yoshikawa, B. Shen, Appl. Phys. Lett. 96, 061907 (2010)CrossRefGoogle Scholar
  48. 48.
    W. Zhang, A. K. Azad, D. Grischkowsky, Appl.Phys. Lett. 82, 2841–2843 (2003).CrossRefGoogle Scholar
  49. 49.
    M. Levinshtein, S. Rumyantsev, M. Shur, in Handbook Series on Semiconductor Parameters (World Scientific, Singapore, 1996).Google Scholar
  50. 50.
    Ref [49] and updates for InN as listed on Semiconductors NSM Archive (http://www.ioffe.rssi.ru/SVA/NSM/Semicond/). The intrinsic carrier concentration of InN is calculated using a bang gap value of Eg = 0.70 eV.
  51. 51.
    X. Mu, Y. J. Ding, K. Wang, D. Jena, Y. B. Zotova, Opt. Lett. 32, 1423–1425 (2007).CrossRefGoogle Scholar
  52. 52.
    K. A. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, D. Jena, Appl. Phys. Lett. 89, 162110 (2006).CrossRefGoogle Scholar
  53. 53.
    P. G. Huggard, C. J. Shaw, J. A. Cluff, S. R. Andrews, Appl. Phys. Lett. 72, 2069 (1998).CrossRefGoogle Scholar
  54. 54.
    V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, J. Graul, Phys. Stat. Sol. B 229, R1 (2002).CrossRefGoogle Scholar
  55. 55.
    J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, W. J. Schaff, J. Appl. Phys. 74, 4457 (2003).CrossRefGoogle Scholar
  56. 56.
    A. Yariv, Quantum Electronics, 3rd ed., Wiley, NY, 1989.Google Scholar
  57. 57.
    B. F. Levine, Phys. Rev. 7, 2600 (1973).CrossRefGoogle Scholar
  58. 58.
    F. N. H. Robinson, Phys. Lett. A 26, 435 (1968).CrossRefGoogle Scholar
  59. 59.
    X.-C. Zhang, B. B. Hu, J. T. Darrow, D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990).CrossRefGoogle Scholar
  60. 60.
    A. Zubrilov, in Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe. Eds. M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, Wiley, NY, 2001, pp.49–66.Google Scholar
  61. 61.
    Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004).CrossRefGoogle Scholar
  62. 62.
    V. I. Gavrilenko, R. Q. Wu, Phys. Rev. B 61, 2632 (2000).CrossRefGoogle Scholar
  63. 63.
    X.-C. Zhang, Y. Jin, K. Yang, L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992).CrossRefGoogle Scholar
  64. 64.
    G. Xu, Y. J. Ding, H. Zhao, G. Liu, M. Jamil, N. Tansu, I. B. Zotova , C. E. Stutz, D. E. Diggs, N. Fernelius, F. K. Hopkins, Semicond. Sci. Technol. 25, 015004 (2010).CrossRefGoogle Scholar
  65. 65.
    M. Jamil, H. Zhao, J. Higgins, N. Tansu, Phys. Status Solidi A 205, 2886 (2008).CrossRefGoogle Scholar
  66. 66.
    M. Jamil, H. Zhao, J. Higgins, N. Tansu, J. Crys. Growth 310, 4947 (2008).CrossRefGoogle Scholar
  67. 67.
    M. Jamil, R. A. Arif, Y. K. Ee, H. Tong, J. B. Higgins, N. Tansu, Phys. Status Solidi A 205, 1619 (2008).CrossRefGoogle Scholar
  68. 68.
    L. F. Jiang, W. Z. Shen, H. F. Yang, H. Ogawa, Q. X. Guo, Appl. Phys. A 78, 89 (2004).CrossRefGoogle Scholar
  69. 69.
    W. Liang, K.T. Tsen, D.K. Ferry, H. Lu, W.J. Schaff, Appl. Phys. Lett. 84, 3681 (2004).CrossRefGoogle Scholar
  70. 70.
    G. Xu, G. Sun, Y. J. Ding, I. B. Zotova, M. Jamil, I. T. Ferguson. J. Appl. Phys. 109, 093111 (2011).Google Scholar
  71. 71.
    M. Jamil, T. Xu, T. Zaidi, A. Melton, B. Jampana, C.-L. Tan, B. S. Ooi, I. T. Ferguson, Phys. Status Solidi A 207, 1895 (2010).CrossRefGoogle Scholar
  72. 72.
    H. Ahn, Y.-J. Yeh, Y.-L. Hong, S. Gwo, Appl. Phys. Lett. 95, 232104 (2009).CrossRefGoogle Scholar
  73. 73.
    V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3 rd ed. (Springer, Berlin, 1999).Google Scholar
  74. 74.
    M. Nakajima, M. Hangyo, M. Ohta, H. Miyazaki, Phys. Rev. B 67, 195308 (2003).CrossRefGoogle Scholar
  75. 75.
    G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, Appl. Phys. Lett. 98 , 021114 (2011).CrossRefGoogle Scholar
  76. 76.
    G. Sharma, L. Razzari, F. H. Su, F. Blanchard, A. Ayesheshim, T. L. Cocker, L. V. Titova, H. C. Bandulet, T. Ozaki, J.-C. Kieffer, R. Morandotti, M. Reid, F. A. Hegmann, IEEE Photon. J. 2, 578 (2010).CrossRefGoogle Scholar
  77. 77.
    M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, IEEE J. of Selected Topics in Quantum Electronics 15, 952 (2009).Google Scholar
  78. 78.
    O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, V. Tamošinuas, Optics Express 14, 5335 (2006).CrossRefGoogle Scholar
  79. 79.
    M.I. Dyakonov, M.S. Shur. Phys. Rev. Lett. 71, 2465 (1993).CrossRefGoogle Scholar
  80. 80.
    Y. M. Meziani, H. Handa, W. Knap, T. Otsuji, E. Sano, V. V. Popov, G. M. Tsymbalov, D. Coquillat, F. Teppe, Appl. Phys. Lett. 92, 201108 (2008).CrossRefGoogle Scholar
  81. 81.
    R. A. Höpfel, E. Vass, E. Gornik, Phys. Rev. Lett. 49, 1667 (1982).CrossRefGoogle Scholar
  82. 82.
    W. E. Anderson Jr., R. W. Alexander, R. J. Bell, Phys. Rev. Lett. 27, 1057 (1971).CrossRefGoogle Scholar
  83. 83.
    S. J. Allen, D. C. Tsui, R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).CrossRefGoogle Scholar
  84. 84.
    J. G. Rivas, M. Kuttge, H. P.Bolivar, H. Kurz, J. A. Sánchez-Gil, Phys. Rev. Lett. 93, 256804 (2004).CrossRefGoogle Scholar
  85. 85.
    J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Milet, S. Mainguy, Y. Chen, Nature 416, 61 (2002).CrossRefGoogle Scholar
  86. 86.
    T. V. Shubina, A. V. Andrianov, A. O. Zakhar’in, V. N. Jmerik, I. P. Soshnikov, T. A. Komissarova, A. A. Usikova, P. S. Kop’ev, S. V. Ivanov, V. A. Shalygin, A. N. Sofronov, D. A. Firsov, L. E. Vorob’ev, N. A. Gippius, J. Leymarie, X. Wang, A. Yoshikawa, Appl. Phys. Lett. 96, 183106 (2010).CrossRefGoogle Scholar
  87. 87.
    T. V. Shubina, N. A. Gippius, V. A. Shalygin, A. V. Andrianov, S. V. Ivanov, Phys. Rev. B 83, 165312 (2011).CrossRefGoogle Scholar
  88. 88.
    R. H. Ritchie, Phys. Rev. 106, 874 (1957).MathSciNetCrossRefGoogle Scholar
  89. 89.
    F. Stern, Phys. Rev. Lett. 18, 546 (1967).CrossRefGoogle Scholar
  90. 90.
    A. V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 746 (1972) [Sov. Phys. JETP 35, 395 (1972)].Google Scholar
  91. 91.
    T. N. Theis, J. R. Kirtley, D. J. DiMaria, D. W. Dong, Phys. Rev. Lett. 50, 750 (1983).CrossRefGoogle Scholar
  92. 92.
    E. N. Economou, Phys. Rev. 182, 539 (1969).CrossRefGoogle Scholar
  93. 93.
    J. J. Burke, G. I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986).CrossRefGoogle Scholar
  94. 94.
    F. Yang, J. R. Sambles, G. W. Bradberry, Phys. Rev. B 44, 5855 (1991).CrossRefGoogle Scholar
  95. 95.
    V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, Appl. Phys. Lett. 75, 3297 (1999).CrossRefGoogle Scholar
  96. 96.
    M. Goiran, M. Millot, J.-M. Poumirol, I. Gherasoiu, W. Walukiewicz, J. Leotin, Appl. Phys. Lett. 96, 052117 (2010).CrossRefGoogle Scholar
  97. 97.
    T. V. Shubina, S. V. Ivanov,V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, P. S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, B. Monemar, Phys. Rev. Lett. 92, 117407 (2004).CrossRefGoogle Scholar
  98. 98.
    J. Lecante, Y. Ballu, D. M. Newns, Phys. Rev. Lett. 38, 36 (1977).CrossRefGoogle Scholar
  99. 99.
    R. Z. Vitlina, A. V. Chaplik, Zh. Eksp. Teor. Fiz. 83, 1457 (1982) [Sov. Phys. JETP 56, 839 (1982)].Google Scholar
  100. 100.
    V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, V. Yu. Panevin, A. N. Sofronov, G. A. Melentyev, A. V. Antonov, V. I. Gavrilenko, A. V. Andrianov, A. O. Zakharyin, S. Suihkonen, P. T. Törma, M. Ali, H.Lipsanen, J. Appl. Phys. 106, 123523 (2009).CrossRefGoogle Scholar
  101. 101.
    V. A. Shalygin, L. E. Vorob’ev, D. A. Firsov, V. Yu. Panevin, A. N. Sofronov, G. A. Melent’ev, A. V. Andrianov, A. O. Zakhar’in, N. N. Zinov’ev, S. Suihkonen, H. Lipsanen, Bull. Russ. Acad. Sci. Phys. 74, 86 (2010).CrossRefGoogle Scholar
  102. 102.
    M. Richter, S. Butscher, M. Schaarschmidt, A. Knorr, Phys. Rev. B 75, 115331 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ingrid Wilke
    • 1
  • Yujie J. Ding
    • 2
  • Tatiana V. Shubina
    • 3
  1. 1.Department of Physics, Applied Physics & AstronomyRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Electrical and Computer EngineeringLehigh UniversityBethlehemUSA
  3. 3.Ioffe Physico-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations