Skip to main content
Log in

The Extraordinary Transmission Spectrum in Terahertz Regime: Combination of Shape Resonances and Rayleigh anomalies

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We present the Terahertz wave extraordinary transmission through thin metal film with periodic arrays of subwavelength rectangular holes. By designing metallic hole arrays with different periods along x and y direction, the transmission spectrum with a non-Fano type is obtained. The roles of shape resonances and Rayleigh anomalies in extraordinary transmission are clarified. Our results demonstrate that the enhanced transmission can be attributed to the shape resonance, and the position of transmission minimum comes from the Rayleigh anomaly which is related to the period of the holes array. Shape resonance in hole arrays is different from the classical waveguide resonance, instead, the resonance behaves a surface plasmon polariton-like character but it is irrelevant to the period of the hole arrays. Our finding is applicable to exploit terahertz field localization which can be used to study terahertz nonlinear spectroscopy of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A.Wolff, Nature (London) 391, 667 -669 (1998).

  2. X. Fang, Z. Y. Li, Y. B. Long, H. X. Wei, R. J. Liu, J. Y. Ma, M. Kamran, H. Y. Zhao, X. F. Han, B. R. Zhao, and X. G. Qiu, Phys. Rev. Lett. 99,066805 (2007)

    Article  Google Scholar 

  3. H. J. Lezec and T. Thio, Opt. Express 12, 3629 (2004)

    Article  Google Scholar 

  4. Jeffrey M. McMahon1, Joel Henzie, Teri W. Odom, George C. Schatz, and Stephen K. Gray, Opt. Express 15, 18119 (2007).

  5. M. Dragoman, D. Dragoman, Prog. Quan. Electron. 32, 1 (2008).

    Article  Google Scholar 

  6. W. Zhang, Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).

    Article  Google Scholar 

  7. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)

    Article  Google Scholar 

  8. D. Qu, D. Grischkowsky, and W. Zhang, Opt. Lett. 29, 896-898 (2004).

    Article  Google Scholar 

  9. H. Cao and A. Nahata, Opt. Express 12, 1004 (2004)

    Article  Google Scholar 

  10. Jiaguang Han, Abul K. Azad, Mufei Gong, Xinchao Lu, and Weili Zhang, Appl. Phys. Lett. 91, 071122 (2007)

    Article  Google Scholar 

  11. Weili Zhang, Abul K. Azad, Jiaguang Han, Jingzhou Xu, Jian Chen, and X.-C. Zhang, Phys. Rev. Lett. 98, 183901 (2007)

  12. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, Phys. Rev. Lett. 99, 137401 (2007).

    Article  Google Scholar 

  13. Dong Li, Shiwei Shu, Fangfang Li, Guohong Ma , Ye Dai, Hongliang Ma, Opt. Commu. 284, 2415 (2011).

    Article  Google Scholar 

  14. P. Lalanne, J.P. Hugonin, S. Astilean, M. Palamaru and K.D. Möller, J. Opt. A: Pure Appl. Opt. 2, 48 (2000)

    Article  Google Scholar 

  15. Dong Li, Shiwei Shu, Fangfang Li Guohong Ma, Jin Ge, Shuhong Hu, and Ning Dai, Chin. Opt. Lett. 9, 013102 (2011).

    Google Scholar 

  16. Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, and S. C. Lee, Opt. Expr. 17, 2631 (2009)

    Article  Google Scholar 

  17. R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, Opt. Expr. 19, 6312 (2011)

    Article  Google Scholar 

  18. R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, Opt. Expr. 18, 13044 (2010).

    Article  Google Scholar 

  19. R. Singh, C. Rockstuhl, and W. L. Zhang, Appl. Phys. Lett. 97, 241108 (2010).

    Article  Google Scholar 

  20. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, Appl. Phys. Lett. 99, 201107 (2011).

    Article  Google Scholar 

  21. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).

    Article  Google Scholar 

  22. D. Li, G. Ma, J. Ge, S. Hu, N. Dai, Appl. Phys. B 94, 623 (2009).

    Article  Google Scholar 

  23. G. H. Ma, D. Li, H. Ma, J. Shen, C. G. Wu, J. Ge, S. H. Hu, N. Dai, Appl. Phys. Lett. 93, 211101 (2008).

    Article  Google Scholar 

  24. J. H. Kang, J-H. Choe, D. S. Kim, and Q-H. Park, Opt. Express 18, 15652 (2008).

    Google Scholar 

  25. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-vidal, Science 305, 847 (2004)

    Article  Google Scholar 

  26. X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, Phys. Rev. A 76, 035802 (2007).

    Article  Google Scholar 

  27. Q-Han Park, Contemporary Physics, 50, 407 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by National Natural Science Foundation of China (11174195), Science and Technology Commission of Shanghai municipal (09530501100), S. H. Hu and N. Dai would like to thank the financial support from National High Technology Research and Development (2006AA12Z135) and National Nature Science Foundation of China (Grant Nos. 10334030, 60225004, and 60221502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Li, G., Kong, H. et al. The Extraordinary Transmission Spectrum in Terahertz Regime: Combination of Shape Resonances and Rayleigh anomalies. J Infrared Milli Terahz Waves 33, 212–217 (2012). https://doi.org/10.1007/s10762-011-9868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9868-4

Keywords

Navigation