Skip to main content
Log in

A Technology Demonstrator for 1.6–2.0 THz Waveguide HEB Receiver with a Novel Mixer Layout

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we present our studies on a technology demonstrator for a balanced waveguide hot-electron bolometer (HEB) mixer operating in the 1.6–2.0 THz band. The design employs a novel layout for the HEB mixer combining several key technologies: all-metal THz waveguide micromachining, ultra-thin NbN film deposition and a micromachining of a silicon-on-insulator (SOI) substrate to manufacture the HEB mixer. In this paper, we present a novel mixer layout that greatly facilitates handling and mounting of the mixer chip via self-aligning as well as provides easy electrical interfacing. In our opinion, this opens up a real prospective for building multi-pixel waveguide THz receivers. Such receivers could be of interest for SOFIA, possible follow up of the Herschel HIFI, and even for ground based telescopes yet over limited periods of time with extremely dry weather (PWV less than 0.1 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. SOFIA: Stratospheric Observatory for Infrared Astronomy, http://www.sofia.usra.edu/index.html.

  2. Herschel Observatory, http://herschel.esac.esa.int/.

  3. Plank Observatory, http://www.esa.int/esaMI/Planck/index.html.

  4. N. Schneider, V. Minier, G. Durand, P. Tremblin, J. Urban, and P. Baron, “Atmospheric Transmission at Dome C between 0 and 10 THz,” EAS Publications Series, vol. 40, pp. 327–332, 2010.

    Article  Google Scholar 

  5. D. Meledin, A. Pavolotsky, V. Desmaris, I. Lapkin, C. Risacher, V. P. Robles, D. Henke, O. Nyström, E. Sundin, D. Dochev, M. Pantaleev, M. Fredrixon, M. Strandberg, B. Voronov, G. Gol’tsman, and V. Belitsky, “A 1.3 THz balanced waveguide HEB mixer for the APEX telescope,” IEEE Trans. Microwave Theory Tech., vol. 57, pp. 89–98, 2009.

    Article  Google Scholar 

  6. J. R. Pardo, E. Serabyn, and J. Cernicharo, “Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions,” J. Quant. Spectrosc. Radiat. Transf., vol. 68, pp. 419–433, 2001.

    Article  Google Scholar 

  7. S. Paine, R. Blundell, D. C. Papa, and J. W. Barrett, “A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths,” PASP, vol. 112, pp. 108–118, 2000.

    Article  Google Scholar 

  8. D. P. Marrone, R. Blundell, E. Tong, S. N. Paine, D. Loudkov, J. H. Kawamura, D. Lühr, and C. Barrientos, “Observations in the 1.3 and 1.5 THz atmospheric windows with the receiver lab telescope,” in 16 th Int. Symp. Space Terahertz Technol. Göteborg, Sweden, 2005.

  9. G. de Lange, “Development of the HIFI band 3 and 4 mixer units,” Proc. SPIE Int. Soc. Opt. Eng., vol. 5498, pp. 267–277, 2004.

    Google Scholar 

  10. G. H. Tan, “The ALMA front ends: an overview,” in Proc. 19 th Int. Symp.Space Terahertz Technol. Groningen, 2008.

  11. V. Belitsky, I. Lapkin, V. Vassilev, R. Monje, A. B. Pavolotsky, D. Meledin, D. Henke, O. Nyström, V. Desmaris, C. Risacher, M. Svensson, M. Olberg, E. Sundin, M. Fredrixon, D. Dochev, S.-E. Ferm, and H. Olofsson, “Facility Heterodyne Receiver for the Atacama Pathfinder Experiment Telescope,” in Joint 32 nd Int. Conf. Infrared Millimeter Waves and 15 th Int. Conf. Terahertz Electronics Cardiff, UK, 2007.

  12. P. Khosropanah, J. R. Gao, W. M. Laauwen, M. Hajenius, and T. M. Klapwijk, “Low noise NbN hot electron bolometer mixer at 4.3 THz,” Appl. Phys. Lett., vol. 91, p. 221111, 2007.

    Article  Google Scholar 

  13. S. Cherednichenko, V. Drankinskiy, T. Berg, P. Khosropanah, and E. Kollberg, “Hot-electron bolometer terahertz mixers for the Hershel Space Observatory,” Rev. Sci. Inst., vol. 79, p. 034501, 2008.

    Article  Google Scholar 

  14. E. Tong, J. Kawamura, D. Marrone, D. Loudkov, S. Paine, R. Blundell, C. Barrientos, and D. Lühr, “A 1.5 THz hot electron bolometer receiver for ground-based terahertz astronomy in northern Chile,” Proc. SPIE, vol. 6373, 2006.

  15. J. W. Kooi and V. Ossenkopf, “HIFI instrument stability as measured during the thermal vacuum tests of the Herschel space observatory,” Proc. 20 th Int. Symp. Space THzTechnol., 2009.

  16. A. Pavolotsky, D. Meledin, C. Risacher, M. Pantaleev, and V. Belitsky, “Micromachining approach in fabricating of THz waveguide components,” Microelectron. J., vol. 36, p. 636, 2005.

    Article  Google Scholar 

  17. V. Desmaris, D. Meledin, A. Pavolotsky, R. Monje, and V. Belitsky, “All-metal micromachining for the fabrication of sub-millimetre and THz waveguide components and circuits,” J. Micromech. Microeng., vol. 18, p. 095994, 2008.

    Article  Google Scholar 

  18. D. M. Pozar, Microwave engineering, 3rd ed.: John Wiley & Sons, Inc., 2005.

  19. G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance-matching networks, and coupling structures. Dedham Artech House, 1980.

  20. CST AG., CST Studio Suite™ 2009.

  21. Agilent Technologies, EMDS, 2000.

  22. G. Yassin and S. Withington, “Analytical expression for the input impedance of a microstrip probe in waveguide,” Int. J. Infrared Millimeter Waves, vol. 17, pp. 1685–1705, 1996.

    Article  Google Scholar 

  23. J. Kooi, “A full-heigth waveguide to thin-film microstrip with exceptional RF bandwidth and coupling efficiency,” Int. J. Infrared Millimeter Waves, vol. 24, pp. 261–283, 2003.

    Article  Google Scholar 

  24. C. Risacher, V. Vassilev, V. Belitsky, and A. Pavolotsky, “Waveguide-to-microstrip transition with integrated bias—T,” IEEE Microwave Wireless Comp. Lett., vol. 13, pp. 262–264 2003.

    Article  Google Scholar 

  25. C. Risacher, V. Belitsky, V. Vassilev, I. Lapkin, and A. Pavolotsky, “A 275–370 GHz receiver SIS Mixer with novel probe structure,” Int. J. Infrared and Millimeter Waves, vol. 26, pp. 867–879, 2005.

    Article  Google Scholar 

  26. S. Cherednichenko, V. Drakinskiy, J. Baubert, B. Lecomte, F. Dauplay, J.-M. Krieg, Y. Delorme, A. Feret, H.-W. Hübers, A. D. Semenov, and G. N. Gol’tsman, “2.5 THz multipixel heterodyne receiver based on NbN HEB mixers,” Proc. SPIE, vol. 6275, 2006.

  27. R. B. Bass, J. C. Schultz, A. W. Lichtenberger, R. M. Weikle, S.-K. Pan, E. Bryerton, C. K. Walker, and J. W. Kooi, “Ultra-thin silicon chips for submillimeter-wave applications,” in Proc. 15 th Int. Symp. Space & THz Tech., Northampton, MA, USA, 2003, pp. 499–501.

  28. M. P. Lepselter, “Beam-Lead Technology,” Bell. Syst. Tech. J., vol. 45, pp. 233–253, 1966.

    Google Scholar 

  29. R. B. Bass, J. C. Schultz, A. W. Lichtenberger, J. W. Kooi, and C. K. Walker, “Beam lead fabrication for submillimeter-wave circuits using vacuum planarization,” in Proc. 14 th Int. Symp. Space & THz Tech., Tucson, AZ, USA, 2003, pp. 499–501.

  30. A. B. Kaul, B. Bumble, K. A. Lee, H. G. LeDuc, F. Rice, and J. Zmuidzinas, “Fabrication of wide-IF 200–300 GHz superconductor-insulator-superconductor mixers with suspended metal beam leads on silicon-on-insulator,” J. Vac. Sci. Technol. B, vol. 22, pp. 2417–2422, 2004.

    Article  Google Scholar 

  31. P. H. Siegel, R. P. Smith, M. C. Gaidis, and S. C. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 596–604, 1999.

    Article  Google Scholar 

  32. J. Kooi, C. D. d’Aubigny, R. B. Bass, C. Walker, and A. W. Lichtenberger, “Large RF bandwidth waveguide to thinfilm microstrip transitions on suspended membrane for use in silicon micromachined mixer blocks at THz frequencies,” in Proc. 14 th Int. Symp. Space THz Tech., Tucson, AZ, 2003.

  33. ANSYS Inc., 275 Technology Drive, Canonsburg, PA 15317, USA.

  34. D. Roundy and M. L. Cohen, “Ideal strength of diamond, Si, and Ge,” Phys. Rev. B, vol. 64, pp. 212103(1)-212103(3), 2001

    Article  Google Scholar 

  35. Ultrasil Corporation, 3527 Breakwater Ave., Hayward, CA 94545, USA.

  36. D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, A. Henry, E. Janzén, E. Pippel, J. Woltersdorf, and V. Belitsky, “Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications,” Supercond. Sci. Technol., vol. 24, pp. 035016(1)–035016(6), 2011.

  37. F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. Patent No. 5501893, 1996.

Download references

Acknowledgements

Erik Sundin (GARD) is acknowledged for his help during the DC characterization. This work was supported by the European Commission Framework Programme 7, Advanced Radio Astronomy in Europe RadioNet, via JRA AMSTAR+, Grant No. 227290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar Dochev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dochev, D., Desmaris, V., Meledin, D. et al. A Technology Demonstrator for 1.6–2.0 THz Waveguide HEB Receiver with a Novel Mixer Layout. J Infrared Milli Terahz Waves 32, 451–465 (2011). https://doi.org/10.1007/s10762-011-9774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9774-9

Keywords

Navigation