Skip to main content
Log in

Terahertz Generation and Optical Properties of Lithium Ternary Chalcogenide Crystals

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We have investigated the generation of THz radiation in lithium ternary compounds LiInSe2, LiGaSe2, LiInS2, LiGaS2 and characterized these materials by THz time-domain spectroscopy. Using 800 nm femtosecond excitation pulse, all crystals produce THz radiation due to an optical rectification corresponding to the nonlinear optical coefficient d 33. We have measured refractive indices along the x-axis and the z-axis for all crystals in the range 150–700 μm and fitted them by using Sellmeier equation. With respect to the obtained results, velocity-matching between the incident laser pulse and the generated THz wave cannot be achieved at 800 nm, but for shorter wavelengths. Hence, an enhanced THz generation in Lithium ternary compounds may be observed by using a laser emitting below 800 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  Google Scholar 

  2. B. Ferguson, X.-C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  Google Scholar 

  3. T. Dekorsy, H. Auer, C. Waschke, H. J. Baker, H. G. Roskos, H. Kurtz, V. Wagner, P. Grosse, Phys. Rev. Lett. 74, 738 (1995).

    Article  Google Scholar 

  4. J. E. Sipe, A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

    Article  Google Scholar 

  5. A. V. Kuznetsov, C. J. Stanton, Phys. Rev. B 48, 10828 (1993).

    Article  Google Scholar 

  6. X.-C. Zhang, D. H. Auston, J. Appl. Phys. 71, 326 (1992).

    Article  Google Scholar 

  7. T. Löffler, T. Hahn, M. Thomson, F. Jacob, H. Roskos, Opt. Exp. 13, 5353 (2005).

    Article  Google Scholar 

  8. P. Y. Han, M. Tani, F. Pan, X.-C. Zhang, Opt. Lett. 25, 675 (2000).

    Article  Google Scholar 

  9. K. Suizu, K. Miyamoto, T. Yamashita, H. Ito, Opt. Lett. 32, 2885 (2007).

    Article  Google Scholar 

  10. T. Matsukawa, Y. Takahashi, R. Miyabara, H. Koga, H. Umezawa, I. Kawayama, M. Yoshimura, S. Okada, M. Tonouchi, Y. Kitaoka, Y. Mori, T. Sasaki, J. Cryst. Growth. 311, 568 (2009).

    Article  Google Scholar 

  11. K. Kawase, M. Sato, T. Taniuchi, H. Ito, Appl. Phys. Lett. 68, 2483 (1996).

    Article  Google Scholar 

  12. L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin, J. Smirnova, Cryst. Res. Tech. 38, 379 (2003).

    Article  Google Scholar 

  13. L. Isaenko, A. Yelisseyev, S. Lobanov, V. Petrov, F. Rotermund, J. Appl. Phys. 91, 9475 (2002).

    Article  Google Scholar 

  14. J. Huang, D. Ren, X. Hu, Y. Qu, Y. Andreev, P. Geiko, A. Shaiduko, S. Grechin, Chinese Opt. Lett. 1, 237 (2003)

    Google Scholar 

  15. G. D. Boyd, H. M. Kasper, J. H. McFee, J. Appl. Phys. 44, 2809 (1973)

    Article  Google Scholar 

  16. A. Eifler, V. Riede, J. Brückner, S. Weise, V. Krämer, G. Lippold, W. Schmitz, K. Bente, W. Grill, Jpn. J. Appl. Phys. 39, (Suppl. 39-1) 279 (2000)

    Google Scholar 

  17. L. I. Isaenko, I. G. Vasilyeva, J. Cryst. Growth. 310, 1954 (2008).

    Article  Google Scholar 

  18. V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, J.-J. Zondy, Appl. Phys. B. 78, 543 (2004)

    Article  Google Scholar 

  19. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, V. Sirutkaitis, J. Opt. Soc. Am. B. 21, 1981 (2004).

    Google Scholar 

  20. P. W. Yu, W. J. Anderson, Y.S. Park, Solid State Commun. 13, 1883 (1973).

    Article  Google Scholar 

  21. B. Tell, J. L. Shay, H. M. Kasper, Phys. Rev. B. 6, 3008 (1972).

    Article  Google Scholar 

  22. J. P. Aicardi, G. Aguero, Phys. Stat. Sol. 95, 679 (1997).

    Article  Google Scholar 

  23. B. M. Basol, A. Halani, C. Leidholm, G. Norsworthy, V. K. Kapur, A. Swartzlander, R. Matson, Prog. Photov. Res. Appl. 8, 227 (2000).

    Article  Google Scholar 

  24. K. Kuriyama, T. Nozaki, J. Appl. Phys. 52, 6441 (1981)

    Article  Google Scholar 

  25. R. Adomavičius, A. Krotkus, J. Kois, S. Bereznev, E. Mellikov, Appl. Phys. Lett. 87, 191104 (2005).

    Article  Google Scholar 

  26. D. H. Auston, K. P. Cheung, J. A. Valdmanis, D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

    Article  Google Scholar 

  27. Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 53, 1480 (1988).

    Article  Google Scholar 

  28. X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, C. P. Yakymyshyn, Appl. Phys. Lett. 61, 3080 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

K. Takeya gratefully acknowledges the Osaka University Global COE Program “Center for Electronic Devices Innovation”. We would like to thank Prof. Juraj Darmo (Vienna University of Technology) for his helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Takeya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeya, K., Takemoto, Y., Kawayama, I. et al. Terahertz Generation and Optical Properties of Lithium Ternary Chalcogenide Crystals. J Infrared Milli Terahz Waves 32, 426–433 (2011). https://doi.org/10.1007/s10762-011-9768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9768-7

Keywords

Navigation