Skip to main content
Log in

Double Layered-Background Removal Filter for Detecting Small Infrared Targets in Heterogenous Backgrounds

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Detecting small targets is essential for mitigating the sea-based Infrared search and track (IRST) problem. It is easy to detect small targets in homogeneous backgrounds such as the sky. When targets are on the border line of heterogeneous backgrounds such as the horizon in the sky and sea surface, solving the problem of detection becomes difficult. This paper presents a novel spatial filtering method, called Double Layered-Background Removal Filter (DL-BRF), for achieving high detection rates and low false alarm rates. DL-BRF consists of a Modified-Mean Subtraction Filter (M-MSF) and a consecutive Local-Directional Background Removal Filter (L-DBRF). M-MSF enhances the target signal and reduces background noise. L-DBRF removes horizontal structures, which upgrade the signal-to-clutter ratio and background suppression factor. L-DBRF used after M-MSF enhances the synergistic performance of horizontal target detection. Additionally, the adaptive Hysteresis threshold-based scheme is a suitable detection method. We validate the superior performance of the proposed method via three types of evaluation tests, including a real test scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. J.-H. Luo, H.-B. Ji, J. Liu, “An Algorithm based on Spatial Filter for Infrared Small Target Detection and Its Application to an All Directional IRST System”, Proc. of SPIE, 6279, 62793E (2007).

    Article  Google Scholar 

  2. B. Zhang et al., “Fast New Small-target Detection Algorithm based on a Modified Partial Differential Equation in Infrared Clutter”, Opt. Eng., 46(10), 106401 (2007).

    Google Scholar 

  3. W. A. C. Schmidt, “Modified Matched Filter for Cloud Clutter Suppression”, IEEE Tr. Patt. Anal. Mach. Intell., 12(6), 594-600 (1990).

    Article  Google Scholar 

  4. D. S. K. Chan et al., “Spatial Processing Techniques for the Detection of Small Targets in IR Clutter”, Proc. of SPIE, 1305, 53-62 (1990).

    Article  Google Scholar 

  5. A. Ondini et al., “Techniques for Detection of Multiple, Extended, and Low Contrast Targets in Infrared Maritime Scenarios”, Opt. Eng., 45(12), 126401 (2006).

  6. D. J. Gregoris, S. K. W. Yu, S. Tritchew, “Detection of Dim Targets in FLIR Imagery using Multiscale Transforms”, Proc of SPIE, 2269, 62-71 (1994).

    Article  Google Scholar 

  7. G. Wang et al., “Efficient Method for Multiscale Small Target Detection from a Natural Scene”, Opt. Eng. 35(3), 761-768 (1996).

    Article  Google Scholar 

  8. K. Mikolajczyk, C. Schmid, “Indexing based on Scale Invariant Interest Points”, IEEE ICCV (2001).

  9. G. Loy, A. Zelinsky, “Fast Radial Symmetry for Detecting Points of Interest”, IEEE Tr. Patt. Anal. Mach. Intell. 25(8), 959-973 (2003).

    Article  Google Scholar 

  10. I. S. Reed et al., “A Recursive Moving-target-indication Algorithm for Optical Image Sequences”, IEEE Tr. Aero. Elec. Sys., 26(3), 434-440 (1990).

    Article  Google Scholar 

  11. B. Rozovskii, A. Petrov, “Optimal Nonlinear Filtering for Track-before-Detect in IR Image Sequences”, Proc. of SPIE, 3809, 152-163 (1999).

    Article  Google Scholar 

  12. S. Kumar, “Detection and Tracking Algorithms for IRST”, M. Tech Cedit Seminar Report, IIT Bombay (2004).

    Google Scholar 

  13. J. Arnold, H. Pasternack, “Detection and Tracking of Low-Observable Targets through Dynamic Programming”, Proc. of SPIE, 1305, 207-217 (1990) .

    Article  Google Scholar 

  14. D. S.K. Chan, “A Unified Framework for IR Target Detection and Tracking”, Proc. of SPIE, 1698, 66-76 (1992).

    Article  Google Scholar 

  15. C. E. Caefer et al., “Point Target Detection in Consecutive Frame Staring IR Imagery with Evolving Cloud Clutter”, Proc. of SPIE, 2561, 14-24 (1995).

    Article  Google Scholar 

  16. J. Silverman, J. M. Mooney, C. E. Caefer, “Tracking Point Targets in Cloud Clutter”, Proc. of SPIE, 3061, 496-507 (1997).

    Article  Google Scholar 

  17. A. P. Tzannes, D. H. Brooks, “Point Target Detection in IR Image Sequences: a Hypothesis-Testing Approach based on Target and Clutter Temporal Profile Modeling”, Opt. Eng. 39(8), 2270-2278 (2000).

    Article  Google Scholar 

  18. E. Thiam et al., “Adaptive Mean and Variance Filter for Detection of Dim Point-Like Targets”, Proc. of SPIE, 4728, 492-502 (2002).

    Article  Google Scholar 

  19. V. Ronda et al., “Multi-mode Algorithm for Detection and Tracking of Point-targets”, Proc. of SPIE, 3692, 269-278 (1999).

    Article  Google Scholar 

  20. T. Zhang et al., “Moving Dim Point Target Detection with Three-dimensional Wide-to-exact Search Directional Filtering”, Patt. Recog. Lett., 28, 246-253 (2007)

    Article  Google Scholar 

  21. E. R. Parshall et al., “Infrared Stereo Imaging for 3-D Tracking of Point Targets”, Proc. of SPIE, 2847, 139-148 (1996).

    Article  Google Scholar 

  22. A. N. de Jong et al., “Encountering Bird Alarms in Full-stare IRST’s”, Proc. of SPIE, 4130, 700-709 (2000).

    Article  Google Scholar 

  23. B. Jutzi et al., “Stereo Vision for Small Targets in IR Image Sequences”, Proc. of SPIE, 4473, 361-370 (2001).

    Article  Google Scholar 

  24. R. N. Strickland, H. I. Hahn, “Wavelet Transform Methods for Object Detection and Recovery”, IEEE Trans. Image Processing, 6(5), 724-735 (1997).

    Article  Google Scholar 

  25. Z. Zuo, T. Zhang, “Detection of Sea Surface Small Targets in Infrared Images based on Multi-level Filters”, Proc. of SPIE, 3544, 372-377 (1999).

    Google Scholar 

  26. L. Yang et al., “Adaptive Detection for Infrared Small Target under Sea-sky Complex Background”, Elec. Lett., 40(17) (2004).

  27. T. Soni et al., “Performance Evaluation of 2-D Adaptive Prediction Filters for Detection of Small Objects in Image Data”, IEEE Trans. Image Processing, 2(3), 327-340 (1993).

    Article  MathSciNet  Google Scholar 

  28. N. Sang, T. Zhang, W. Shi, “Characteristics of Contrast and Application for Small Target Detection”, Proc. of SPIE, 3373, 123-129 (1998).

    Article  Google Scholar 

  29. J.-F. Rivest, R. Fortin, “Detection of Dim Targets in Digital Infrared Imagery by Morphological Image Processing”, Opt. Eng., 35(7) 1886-1893 (1996).

    Article  Google Scholar 

  30. S. D. Despande et al., “Max-Mean and Max-Median Filters for Detection of Small-targets”, Proc. of SPIE, 3809, 74-83 (1999).

    Article  Google Scholar 

  31. S. P. van den Broek et al., “Detection and Classification of Infrared Decoys and Small Targets in a Sea Background”, Proc. of SPIE, 4029, 70-80 (2000).

    Article  Google Scholar 

  32. G. H. Watson, S. K. Watson, “The Detection of Moving Targets in Time-sequenced Imagery using Statistical Background Rejection”, Proc. of SPIE, 3163, 45-60 (1997)

    Article  Google Scholar 

  33. J. M. López-Alonso, J. Alda, “Characterization of Dynamic Sea Scenarios with Infrared Imagers”, Infrared Phy. & Tech., 46, 355-363 (2005).

    Article  Google Scholar 

  34. P. Wen et al., “A Method for Automatic Infrared Point Target Detection in a Sea Background based on Morphology and Wavelet Transform”, Proc. of SPIE, 5286, 248-253 (2003).

    Article  Google Scholar 

  35. Y. Gao, J. Li, Z. Shen, “Detection of Moving Small Target in IR Clutter Background Containing Sea and Sky Areas”, Proc. of SPIE, 5640, 341-349 (2005).

    Article  Google Scholar 

  36. Z. Chen et al., “Small Target Detection Algorithm based on Average Absolute Difference Maximum and Background Forecast”, Int. J. Infrared Milli. Waves, 28, 87-97 (2007).

    Article  Google Scholar 

  37. Z. Peng, Q. Zhang, “Dim Target Detection based on Nonlinear Multifeature Fusion by Karhunen-Loeve Transform”, Opt. Eng., 43(12), 2954-2958 (2004) .

    Article  Google Scholar 

  38. J.-N. Chi et al., “A Detection Method of Infrared Image Small Target based on Order Morphology Transformation and Image Entropy Difference”, Proc. of Int. Conf. on Mach. Learning and Cyb. (2005).

  39. F. Crosby, “Glint Induced False Alarm Reduction in Signature Adaptive Target Detection”, Proc. of SPIE, 4726, 285-294 (2002).

    Article  Google Scholar 

  40. A. Toet, “Detection of Dim Point Targets in Cluttered Maritime Backgrounds through Multisensor Image Fusion”, Proc. of SPIE, 4718, 118-129 (2002).

    Article  Google Scholar 

  41. E. T. Lim et al., “Multi-mode Fusion Algorithm for Robust Dim Point-like Target Detection”, Proc. of SPIE, 5082 94-102 (2003).

    Article  Google Scholar 

  42. H. Bouman et al., “Automatic Detection of Small Surface Targets with Electro-Optical Sensors in a Harbor Environment”, Proc. of SPIE, 7114, 711402 (2008).

    Article  Google Scholar 

  43. Z. Bai et al., “Infrared Small Target Detection and Tracking under the Conditions of Dim Target Intensity and Clutter Background”, Proc. of SPIE, 6786, 67862 M (2007).

    Article  Google Scholar 

  44. W. L. New et al., “New Method for Detection of Dim Point-Targets in InfraRed Images”, Proc. of SPIE, 3809, 141-150 (1999).

    Article  Google Scholar 

  45. F. Crosby, “Signature Adaptive Target Detection and Threshold Selection for Constant False Alarm Rate”, J. Electronic Imaging, 14(3), 033009 (2005).

    Google Scholar 

  46. J. F. Khan, M. S. Alam, “Target Detection in Cluttered Forward-looking Infrared Imagery”, Opt. Eng., 44(7), 076404 (2005).

    Google Scholar 

  47. W. A. Hubbard et al., “Feature Measurement Augmentation for a Dynamic Programming based IR Target Detection Algorithm in the Naval Environment”, Proc. of SPIE, 2698, 2-9 (1999).

    Article  Google Scholar 

  48. M. V. Shirvaikar, M. M. Trivedi, “A Neural Network Filter to Detect Small Targets in High Clutter Backgrounds”, IEEE Trans. on Neural Networks, 6(1), 252-257 (1995).

    Article  Google Scholar 

  49. K. Messer et al., “Adaptive Automatic Target Recognition with SVM Boosting for Outlier Detection”, LNCS 1876, 104-113 (2000).

    Google Scholar 

  50. R. C. Warren, Detection of distant airborne targets in cluttered backgrounds in infrared image sequences, Ph.D. Thesis, University of South Australia, (2002).

  51. D. Maltese et al., “New generation of naval IRST: example of EOMS NG”, Proc. of SPIE, 7660 (2010).

  52. H. Bouma et al., “Automatic detection of small surface targets with electro-optical sensors in a harbour environment”. Proc. SPIE, 7114 (2008).

  53. B. Zhang et al., “Fast new small-target detection algorithm based on a modified partial differential equation in infrared clutter”, Optical Engineering, 46(10), 106401 (2007).

    Google Scholar 

  54. A. Toet and T. Wu, “Small maritime target detection through false color fusion,” Proceedings of SPIE, 6945 (2008).

Download references

Acknowledgements

This research was supported by Yeungnam University research grants in 210-A-054-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S. Double Layered-Background Removal Filter for Detecting Small Infrared Targets in Heterogenous Backgrounds. J Infrared Milli Terahz Waves 32, 79–101 (2011). https://doi.org/10.1007/s10762-010-9742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9742-9

Keywords

Navigation