Skip to main content
Log in

Gaussian Beam Scattering by a Spheroidal Particle with an Embedded Conducting Sphere

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A method is provided for calculating the scattering of Gaussian beam incident obliquely on a spheroidal particle with a conducting spherical inclusion within the framework of the generalized Lorenz-Mie theory (GLMT). By virtue of a transformation between the spheroidal and spherical vector wave functions, a theoretical procedure is developed to deal with the boundary conditions. Numerical results of the normalized differential scattering cross section are presented, and the scattering characteristics are discussed concisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Asano and G. Yamamoto, “Light scattering by a spheroid particle,” Appl. Opt., Vol.14, 29–49, 1975

    Google Scholar 

  2. A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag., Vol.40, 268–273, 1992.

    Article  Google Scholar 

  3. D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt., Vol.14, 29–49, 1975.

    Google Scholar 

  4. J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt., Vol.34, 5542–5551, 1995.

    Article  Google Scholar 

  5. Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt., Vol.40, 2501–2509, 2001.

    Article  Google Scholar 

  6. Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt., Vol.42, 6621–6629, 2003.

    Article  Google Scholar 

  7. L.-W. Li, M.-S. Leong, T.-S. Yeo and Y.-B. Gan, “Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome,” IEEE Trans. Antennas Propag., Vol.50, 1525–1533, 2002.

    Article  MathSciNet  Google Scholar 

  8. F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A., Vol.24, 119–131, 2007.

    Article  MATH  Google Scholar 

  9. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A., Vol.5, 1427–1443, 1988.

    Article  Google Scholar 

  10. G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the g n coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt., Vol.27, 4874–4883 1988.

    Article  Google Scholar 

  11. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beam in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A., Vol.16, 1641–1650, 1999.

    Article  MathSciNet  Google Scholar 

  12. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt., Vol.37, 4218–4225, 1998.

    Article  Google Scholar 

  13. Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrarily shaped beam in oblique illumination,” Optics Express, Vol.15, 735–746, 2007.

    Article  Google Scholar 

  14. Huayong Zhang and Yufa Sun, “Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model,” J. Opt. Soc. Am. B., Vol.27, 883–887, 2010.

    Article  Google Scholar 

  15. C. Flammer, Spheroidal wave functions, Stanford University Press, Stanford, California, 1957.

    MATH  Google Scholar 

  16. L. W. Davis, “Theory of electromagnetic beam,” Phys Rev A., Vol.17, 1177–1179, 1979.

    Article  Google Scholar 

  17. J. A. Stratton, Electromagnetic Theory, New York, McGraw-Hill, 1941.

    MATH  Google Scholar 

  18. J. Dalmas and R. Deleuil, “Translational addition theorems for prolate spheroidal vector wave functions M r and N r,” Q. Appl. Math., Vol.44, 213–222, 1986.

    MathSciNet  MATH  Google Scholar 

  19. J. Dalmas and R. Deleuil, “multiple scattering of electromagnetic waves from two prolate spheroids with perpendicular axea of revolution,” Radio Science, Vol.28, 105–119, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B., Zhang, H. & Liu, C. Gaussian Beam Scattering by a Spheroidal Particle with an Embedded Conducting Sphere. J Infrared Milli Terahz Waves 32, 126–133 (2011). https://doi.org/10.1007/s10762-010-9738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9738-5

Keywords

Navigation