Skip to main content
Log in

Scattering of Gaussian Beam by a Conducting Spheroidal Particle with Confocal Dielectric Coating

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

An analytic solution to the scattering by a coated spheroidal particle, for arbitrary incidence of a Gaussian beam, is constructed by expanding the incident and scattered electromagnetic fields in terms of spheroidal vector wave functions. The unknown expansion coefficients are determined by a system of linear equations derived from the appropriate boundary conditions. Numerical results of the normalized differential scattering cross section of the conducting and coated spheroidal particle are evaluated, and the scattering characteristics are discussed concisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Asano and G. Yamamoto, “Light scattering by a spheroid particle,” Appl. Opt. 14, 29–49 (1975).

    Google Scholar 

  2. S. Asano, “light scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979).

    Article  Google Scholar 

  3. A. R. Sebak and B. P. Sinha, “Scattering by a conducting spheroidal object with dielectric coating at axial incidence,” IEEE Trans. Antennas Propag. 40, 268–273 (1992).

    Article  Google Scholar 

  4. L.-W. Li, M.-S. Leong, T.-S. Yeo and Y.-B. Gan, “Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome,” IEEE Trans. Antennas Propag. 50, 1525–1533 (2002)

    Article  MathSciNet  Google Scholar 

  5. D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 14, 29–49 (1975).

    Google Scholar 

  6. J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34, 5542–5551 (1995).

    Article  Google Scholar 

  7. J. P. Barton, “Internal, near-surface, and scattered electromagnetic fields for a layered spheroid with arbitrary illumination,” Appl. Opt. 40, 3596–3607 (2001).

    Google Scholar 

  8. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

    Article  Google Scholar 

  9. G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the g n coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

    Article  Google Scholar 

  10. G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients g m n in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1003 (1990).

    Article  Google Scholar 

  11. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225, (1998).

    Article  Google Scholar 

  12. Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

    Article  Google Scholar 

  13. Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

    Article  Google Scholar 

  14. F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).

    Article  MATH  Google Scholar 

  15. F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Physical Review E 75, 026613 (2007).

    Article  Google Scholar 

  16. Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrarily shaped beam in oblique illumination,” Optics Express 15, 735–746 (2007).

    Article  Google Scholar 

  17. A. R. Edmonds, Angular momentum in quantum mechanics (Princeton University Press, Princeton, N. J, 1957, Chap.4).

    MATH  Google Scholar 

  18. C. Flammer, Spheroidal wave functions (Stanford University Press, Stanford, California, 1957).

    MATH  Google Scholar 

  19. L. W. Davis, “Theory of electromagnetic beam,” Phys Rev A 19, 1177–1179 (1979).

    Article  Google Scholar 

  20. F. Xu, J. A. Lock, and C. Tropea, “Debye series for light scattering by a spheroid,” J. Opt. Soc. Am. A 27, 671–686 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Shandong Province (Grant No ZR2009AQ013)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Wang, H. & Zhang, H. Scattering of Gaussian Beam by a Conducting Spheroidal Particle with Confocal Dielectric Coating. J Infrared Milli Terahz Waves 31, 1100–1108 (2010). https://doi.org/10.1007/s10762-010-9674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9674-4

Keywords

Navigation