Skip to main content
Log in

Optical Solitons with Power Law Nonlinearity and Hamiltonian Perturbations: An Exact Solution

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper studies the optical solitons with power law nonlinearity in presence of Hamiltonian perturbation terms. The perturbation terms that are taken into account are inter-modal dispersion, third order dispersion, self-steepening term and nonlinear dispersion. An exact 1-soliton solution is obtained by the solitary wave ansatz. Both bright and dark optical soliton solutions are obtained. The domain restrictions have also been identified in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Biswas & S. Konar. Introduction to non-Kerr law optical solitons. CRC Press, Boca Raton, FL, USA. (2006).

    Book  Google Scholar 

  2. A. Biswas, D. Milovic & M. E. Edwards. Mathematical Theory of Dispersion-Managed Optical Solitons. Springer Verlag, New York, NY, USA. (2010).

    MATH  Google Scholar 

  3. A. Biswas. “1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation”. Physics Letters A. Volume 373, Issue 30, 2456–2548. (2009).

    Article  Google Scholar 

  4. A. Biswas. “Temporal 1-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity”. Progress in Electromagnetics Research. Volume 96, 1–7. (2009).

    Article  Google Scholar 

  5. S. Jana & S. Konar. “A new family of Thirring type optical spatial solitons via electromagnetically induced transparency”. Physics Letters A. Volume 362, Issues 5–6, 435–438. (2007).

    Article  Google Scholar 

  6. C. M. Khalique & A. Biswas. “Optical solitons with parabolic and dual-power law nonlinearity via Lie group analysis”. Journal of Electromagnetic Waves and Applications. Volume 23, Number 7, 963–973. (2009).

    Article  MathSciNet  Google Scholar 

  7. R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Optical soliton perturbation in a non-Kerr law media”. Optics and Laser Technology. Volume 40, Issue 4, 647–662. (2008).

    Article  Google Scholar 

  8. R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Soliton perturbation theory for dispersion-managed optical fibers”. Journal of Nonlinear Optical Physics and Materials. Volume 18, Issue 2, 227–270. (2009).

    Article  Google Scholar 

  9. R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Optical solitons by He’s variational principle in a non-Kerr law media”. Journal of Infrared, Millimeter and Terrahertz Waves. Volume 30, Number 5, 526–537. (2009).

    Article  Google Scholar 

  10. S. Konar, S. Jana & Shwetanshumala. “Incoherently coupled screening photovoltaic spatial solitons in biased photovoltaic photorefractive crystals”. Optics Communications. Volume 273, Issue 2, 324–333. (2007).

    Article  Google Scholar 

  11. S. Konar, S. Jana & M. Mishra. “Induced focusing and all optical switching in cubic-quintic nonlinear media”. Optics Communications. Volume 255, Issues 1–3, 114–129. (2005).

    Article  Google Scholar 

  12. S. Konar, S. Jana & W-P Hong. “Two-component spatial holographic solitons supported by cross-phase modulation”. Physica Scripta. Volume 76, Number 5, 470–474. (2007).

    Article  Google Scholar 

  13. X. Lü, J. Li, H-Q Zhang, T. Xu, L-L. Li & B. Tian. “Integrability aspects with optical solitons of a generalized variable coefficient N-coupled higher order nonlinear Schrödinger system from inhomogeneous optical fibers”. Journal of Mathematical Physics. Volume 51, Issue 4, 043511. (2010).

    Article  Google Scholar 

  14. K. Porsezian, A. Hasegawa, V. N. Serkin, T. L. Belyaeva & R. Ganapathy. “Dispersion and nonlinear management for femtosecond optical solitons”. Physics Letters A. Volume 361, Issue 6, 504–508. (2007).

    Article  MATH  Google Scholar 

  15. K. Porsezian, R. Ganapathy, A. Hasegawa & V. N. Serkin. “Nonautonomous soliton dispersion management”. IEEE Journal of Quantum Electronics. Volume 45, Number 12, 1577–1583. (2009).

    Article  Google Scholar 

  16. R. V. J. Raja & K. Porsezian. “A fully vectorial effective index method to analyse the propagation properties of microstructured fiber”. Photonics and Nanostructures - Fundamentals and Applications. Volume 5, Issue 4, 171–177. (2007).

    Article  Google Scholar 

  17. A. K. Sarma. “Dark soliton switching in an NLDC in the presence of higher-order perturbative effects”. Optics and Laser Technology. Volume 41, Issue 3, 247–250. (2009).

    Article  Google Scholar 

  18. A. K. Sarma. “A comparitive study of soliton switching in a two- and three-core coupler with TOD and IMD”. Optik. Volume 120, Issue 8, 390–394. (2009).

    Google Scholar 

  19. A. K. Sarma, M. Saha & A. Biswas. “Effect of two-photon absorption on soliton propagation and soliton-soliton interaction in a silicon waveguide”. Optical Engineering. Volume 49, Issue 3, 035001. (2010).

    Article  Google Scholar 

  20. V. N. Serkin, T. L. Belyaeva, I. V. Alexandrov & M. G. Melo. “Novel topological quasi-soliton solutions for the nonlinear cubic-quintic equation model”. Proceedings of SPIE: The International Society for Optical Engineering. Volume 4271, 292–302. (2001).

    Google Scholar 

  21. S. Shwetanshumala & A. Biswas. “Femtosecond pulse propagation in optical fibers under higher order effects: A collective variables approach”. International Journal of Theoretical Physics. Volume 47, Number 6, 1699–1708. (2007).

    Article  Google Scholar 

  22. S. Shwetanshumala. “Temporal solitons of modified complex Ginzburg Landau equation”. Progress in Electromagnetics Research Letters. Volume 3, 17–24. (2008).

    Article  Google Scholar 

  23. S. Shwetanshumala. “Temporal solitons in nonlinear media modeled by modified complex Ginzburg Landau equation under collective variable approach”. International Journal of Theoretical Physics. Volume 48, Number 4, 1122–1131. (2008).

    Article  MathSciNet  Google Scholar 

  24. A. M. Wazwaz. “Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity”. Mathematical and Computer Modelling. Volume 43, Issues 1–2, 178–184. (2006).

    MathSciNet  Google Scholar 

  25. B. Zhu & X-L Yang. “High-order nonlinearity influence on performance of high rate soliton communication system and its suppression method”. Journal of Infrared, Millimeter and Terahertz waves. Volume 30, Number 6, 545–555. (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The research work of the third author (AB) was fully supported by NSF-CREST Grant No: HRD-0630388 and this support is genuinely and sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, A.K., Saha, M. & Biswas, A. Optical Solitons with Power Law Nonlinearity and Hamiltonian Perturbations: An Exact Solution. J Infrared Milli Terahz Waves 31, 1048–1056 (2010). https://doi.org/10.1007/s10762-010-9673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9673-5

Keywords

AMS 2000 Subject Classifications

OCIS

Navigation