Skip to main content

OSCAT: Novel Technique for Time-Resolved Experiments Without Moveable Optical Delay Lines

Abstract

Here, we present a novel technique for time resolved experiments without any moveable external delay line. Optical Sampling by Cavity Tuning (OSCAT) method is based on a femtosecond laser with a tunable repetition rate and a passive delay line. The time delay between the pump and probe pulses is determined by the repetition rate of the femtosecond laser.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A. H. Zewail, “Femtochemistry: Atomi-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104, 5660–5694 (2000).

    Article  Google Scholar 

  2. 2.

    V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem. 59, 53–77 (2008).

    Article  Google Scholar 

  3. 3.

    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd Edition (Springer, Berlin, 1999).

    Google Scholar 

  4. 4.

    S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16, 4639–4664 (2008).

    Article  Google Scholar 

  5. 5.

    S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. E81-C, 269–276 (1998).

  6. 6.

    N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30, 2802–2804 (2005).

    Article  Google Scholar 

  7. 7.

    M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Letters. 18, 950–952 (1993).

    Article  Google Scholar 

  8. 8.

    R. L. Fork and F. A. Beisser, “Real-time intensity autocorrelation interferometer,” Appl. Opt. 17, 3534–3535 (1978).

    Article  Google Scholar 

  9. 9.

    K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18, 558–560 (1993).

    Article  Google Scholar 

  10. 10.

    X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomograhphy,” Opt. Lett. 29, 80–82 (2004).

    Article  Google Scholar 

  11. 11.

    P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” Appl. Opt. 42, 640–648 (2003).

    Article  Google Scholar 

  12. 12.

    J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electr. Lett. 40, 1218–1219 (2004).

    Article  Google Scholar 

  13. 13.

    P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26, 4303–4309 (1987).

    Article  Google Scholar 

  14. 14.

    T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “ Optical sampling by laser cavity tuning,“ Opt. Express 18, 1613–1617 (2010).

    Article  Google Scholar 

  15. 15.

    Y.Yamaoka, K. Minoshima, and H. Matsumoto, “Direct measurement of the group refractive index of air with interferometry between adjacent femtosecond pulses,” Appl. Opt. 41, 4318–4324 (2002).

    Article  Google Scholar 

  16. 16.

    J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004)

    Article  Google Scholar 

  17. 17.

    T. Udem, R. Holzwarth, and T. W. Hänsch „Optical frequency metrology“,Nature 416, 233-237 (2002)

    Article  Google Scholar 

  18. 18.

    Menlo Systems GmbH, http://www.menlosystems.com

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafał Wilk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilk, R., Hochrein, T., Koch, M. et al. OSCAT: Novel Technique for Time-Resolved Experiments Without Moveable Optical Delay Lines. J Infrared Milli Terahz Waves 32, 596–602 (2011). https://doi.org/10.1007/s10762-010-9670-8

Download citation

Keywords

  • OSCAT
  • Femtosecond laser
  • ASOPS
  • Time domain
  • Spectroscopy
  • Cross-correlation