Skip to main content
Log in

Detection of subsurface rocks in sand of similar composition using a millimeter wave imaging system

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The ability to image objects, whether natural or man made, beneath soil is extremely beneficial. The detection scenario becomes increasingly difficult when the object and the soil are composed of the same material, as in the detection of subsurface rocks. The feasibility of detecting rock in similar composition is explored. An active multi-spectral millimeter wave (mmW) imaging system operating from 90–140 GHz is used to detect lava rock buried beneath lava sand at various depths, up to a limit of 64 mm. The principal component analysis method was used in the data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. H. Wilcox, Proc. SPIE 4715, 267 (2002).

    Article  Google Scholar 

  2. G. Reina, L. Ojeda, A. Milella, and J. Borenstein, IEEE/ASME Trans. Mechatron 11, 185 (2006).

    Article  Google Scholar 

  3. Associated Press,"Stuck for a month, Mars Rover finally gets back on track," New York Times, Retrieved April 21, 2008, from http://www.nytimes. com/2005/06/06/science/06mars.html, (2005).

  4. S. Wasson, J. Guilberto, W. Ogg, K. Wedeward, S. Bruder, and A. El-Osery, Proc. SPIE 5415, 1231 (2004).

    Article  Google Scholar 

  5. T. W. Du Bosq, R. E. Peale, A. Weeks, J. Grantham, D. Dillery, D. Lee, D. Muh, and G. Boreman, Proc. SPIE 5790, 66 (2005).

    Article  Google Scholar 

  6. T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for landmine detection,” Appl. Optics 45, 5686 (2006).

    Article  Google Scholar 

  7. H. A. Perko, J. D. Nelson, and J. R. Green, J. Aerospace Eng. 19, 169 (2006).

    Article  Google Scholar 

  8. G. Balco and J. O. Stone, "Measuring the density of rock, sand, till, etc." UW Cosmogenic Nuclide Laboratory, methods and procedures, Retrieved April 21, 2008, from http://depts.washington.edu/cosmolab/chem.html, (2003).

  9. D. F. Morrison, Multivariate statistical methods, 3rd edn. (McGraw-Hill, Singapore, 1990).

    Google Scholar 

  10. J. Kositsky, R. Cosgrove, C. Amazeen, and P. Milanfar, Proc. SPIE 4742, 206 (2002).

    Article  Google Scholar 

  11. J. M. Lopez-Alonso, J. Alda, and E. Bernabeu, Appl. Optics 41, 320 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a subcontract from Epsilon Lambda under prime contract NNG06LA36C from NASA Goddard Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Boreman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Bosq, T., Knox, R. & Boreman, G. Detection of subsurface rocks in sand of similar composition using a millimeter wave imaging system. J Infrared Milli Terahz Waves 31, 54–59 (2010). https://doi.org/10.1007/s10762-009-9554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9554-y

Keywords

Navigation