Skip to main content
Log in

Study of Photonic Crystal Slow-Wave Circuits

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, relations between photonic band gaps and operating mode of slow-wave circuits constructed by photonic crystals are discussed, and methods for computing photonic band gaps and determining the operating band are given. As an example, a slow-wave circuit containing two-dimensional photonic crystals is analyzed. The results explain that complete photonic band gap is not necessary for traveling wave tubes, and more than one defect-mode maybe coexists inside one photonic band gap. If there have no complete photonic band gap, special input and output circuits capable of customizing modes are necessary. Compared with conventional traveling wave tubes, the numerical results do not suggest the bandwidth of the photonic crystal traveling wave tube is wider, and the interaction impedance is lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E. Yablonovich and T. J. Gmitter, Physics Review Letters 63 (2), 1950 (1986).

    Google Scholar 

  2. E. Yablonovitch, Phys. Rev. Lett 58, 2059 (1987).

    Article  Google Scholar 

  3. A. E. Willner, K. M. Feng, J. Cai, S. Lee, J. Peng, and H. Sun, IEEE J. Sel. Top. Quantum Electron 5 (5), 1298 (1999).

    Article  Google Scholar 

  4. E. R. Brown, C. D. Parker, and E. Yablonovitch, J. Opt. Soc. Am B 10 (2), 404 (1993).

    Article  Google Scholar 

  5. M. M. Sigalas, R. Biswas, and K. M. Ho, Microwave Opt. Techmol. Lett 13 (4), 205 (1996).

    Article  Google Scholar 

  6. H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, IEEE Trans. Antennas & Propag 45 (1), 185 (1997).

    Article  Google Scholar 

  7. J. R. Sirigiri, Phys. Rev. Lett 86 (7), 5628 (2001).

    Article  Google Scholar 

  8. I. S. Evgenya, S. K. Amit, and M. Ivan, Physics Review Letters 95, 801 (2005).

    Google Scholar 

  9. C. Chipint, Q. Bao-Liang, and T. J. Richard, Photonic Crystal Ribbon-beam Traveling Wave Amplifier (United States Patent Application Publication, Boston, 2005).

    Google Scholar 

  10. J. J. Louis and J. Fulton, Traveling Wave Tube with a Slow-Wave Circuit on a Photonic Band Crystal Structures (United States Patent Application Publication, Boston, 2003).

    Google Scholar 

  11. Aimee G. Bailey, Evgenya I. Smirnova, Lawrence M. Earleya 2005 10 6120.

  12. A. A. Maragos, Z. C. Ioannidis, and I. G. Tigelis, IEEE Transactions on Plasma Science 31 (5), 1075 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Hai-Rong.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant 60532010 and 60401005. The authors are with University of Electronic Technology and Science of China, Chengdu, China, 610054.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hai-Rong, Y., Yu-Bin, G. & Yan-Yu, W. Study of Photonic Crystal Slow-Wave Circuits. J Infrared Milli Terahz Waves 30, 982–993 (2009). https://doi.org/10.1007/s10762-009-9523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9523-5

Keywords

PACC

Navigation