Skip to main content
Log in

Study on the Suppression of Gyro-BWO by Distributed Wall Losses

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, the effect of distributed wall losses on the starting length and starting frequency of a TE21 mode gyro-BWO is investigated for different operating magnetic fields by using a linear theory. Numerical results show that, for the efficient suppression of a gyro-BWO in a distributed wall losses gyro-TWA consisting of a lossy section followed by a copper section, the wall losses applied in the lossy section should be able to provide a cold attenuation approximately equal to the linear growth rate of the gyro-BWO in the case of wall losses neglected and the copper section length should be shorter than the starting length of the corresponding gyro-BWO without wall losses loaded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. R. Chu, “The electron cyclotron maser,” Reviews of Modern Physics 76 (2), 489–540 (2004).

    Article  Google Scholar 

  2. K. R. Chu, “Overview of research on the gyrotron traveling-wave amplifier,” IEEE Transactions on Plasma Science 30 (3), 903–908 (2002).

    Article  Google Scholar 

  3. W. C. Tsai, T. H. Chang, N. C. Chen, and K. R. Chu, “Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier,” Physical Review E 70 (5), 056402 (2004).

    Article  Google Scholar 

  4. D. B. McDermott et al., “Design of a W-band TE01 mode gyrotron traveling wave amplifier with high power and broad-band capabilities,” IEEE Transactions on Plasma Science 30 (3), 894–900 (2002).

    Article  Google Scholar 

  5. M. Garven, J. P. Calame, B. G. Danly et al., “A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region,” IEEE Transactions on Plasma Science 30 (3), 886–893 (2002).

    Article  Google Scholar 

  6. K. R. Chu, H. Y. Chen, C. L. Hung et al., “Theory and experiment of ultrahigh gain gyrotron traveling-wave amplifier,” IEEE Transactions on Plasma Science 27 (2), 391–404 (1999).

    Article  Google Scholar 

  7. C. Q. Jiao and J. R. Luo, “Preliminary design of a harmonic-doubling gyrotron traveling wave amplifier,” International Journal of Infrared and Millimeter Waves 28 (12), 1095–1101 (2007).

    Article  Google Scholar 

  8. J. Rodgers, H. Guo, V. L. Granaatstein et al., “High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator,” IEEE Transactions on Plasma Science 27 (2), 412–421 (1999).

    Article  Google Scholar 

  9. V. L. Bratman, A. W. Cross, G. G. Denisov et al., “High-gain wide-band gyrotron traveling-wave amplifier with a helically corrugated waveguide,” Physical Review Letters 84 (12), 2746–2749 (2000).

    Article  Google Scholar 

  10. Q. S. Wang, D. B. McDermott, and N. C. Luhmann Jr., “Operation of a stable 200 kW second-harmonic gyro-TWA amplifier,” IEEE Transactions on Plasma Science 24 (3), 700–706 (1996).

    Article  Google Scholar 

  11. Q. S. Wang, C. S. Kou, D. B. McDermott et al., “High-power harmonic gyro-TWAT’s—part II: nonlinear theory and design,” IEEE Transactions on Plasma Science 20 (3), 163–169 (1992).

    Article  Google Scholar 

  12. Y. S. Yeh et al., “W band second harmonic gyrotron traveling wave amplifier with distributed-loss and severed structures,” International Journal of Infrared and Millimeter Waves 25 (1), 29–42 (2004).

    Article  Google Scholar 

  13. C. S. Kou, Q. S. Wang, D. B. McDermott et al., “High-power harmonic gyro-TWAT’s —part I: linear theory and oscillation study,” IEEE Transactions on Plasma Science 20 (3), 155–162 (1992).

    Article  Google Scholar 

  14. C. Q. Jiao and J. R. Luo, “Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam,” Physics of Plasmas 13 (11), 113101 (2006).

    Article  Google Scholar 

  15. J. R. Luo and C. Q. Jiao, “Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes,” Applied Physics Letters 88 (6), 061115 (2006).

    Article  Google Scholar 

  16. C. Q. Jiao and J. R. Luo, “Linear theory of the electron cyclotron maser based on the TM circular waveguide mode,” Physics of Plasmas 13 (7), 073104 (2006).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Funds for Doctor Degree Teacher of North China Electric Power University (Grant No. 200822008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Qing Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, CQ., Luo, JR. Study on the Suppression of Gyro-BWO by Distributed Wall Losses. J Infrared Milli Terahz Waves 30, 924–930 (2009). https://doi.org/10.1007/s10762-009-9522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9522-6

Keywords

Navigation