Skip to main content
Log in

Terahertz Dance of Proteins and Sugars with Water

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The influence of water on biomolecular interfaces and functionality has been in the focus of hydration studies. Improved experimental and computational probes gave insight to this question from different perspectives. The aspect of collective water network dynamics has been experimentally accessed by terahertz (THz) spectroscopy, which is sensitive to even small solute-induced rearrangements of the water network in the biomolecular surroundings. THz hydration studies uncovered that the dynamical hydration shell of saccharides consists of several hundred water molecules and up to thousand water molecules for proteins. Mutations at the protein surface and inside the core perturb the dynamical hydration, whereas it is noticeable that native wild-type proteins most significantly affect hydration dynamics. Kinetic THz absorption (KITA) studies of protein folding recently revealed that solvent dynamics are coupled to secondary structure formation of the protein. The solvent water network is dynamically rearranged in milliseconds before the protein folds to its native state within the following seconds. THz spectroscopy gives experimental evidence that collective long-range dynamics are a key factor of biomolecular hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Gallagher, P. Alexander, P. Bryan, and G. L. Gilliland, Biochemistry 33, 4721 (1994).

    Article  Google Scholar 

  2. B. Halle, Phil. Trans. R. Soc. London 359, 1207 (2004).

    Article  Google Scholar 

  3. J. A. Ernst, R. T. Clubb, H.-X. Zhou, A. M. Gronenborn, and G. M. Clore, Science 267, 1813 (1995).

    Article  Google Scholar 

  4. Y. Fujiyoshi et al., Curr. Op. Struct. Biol. 12, 509 (2002).

    Article  Google Scholar 

  5. A. Frölich et al., Faraday Discuss 141, 117 (2009).

    Article  Google Scholar 

  6. T. Head-Gordon, Proc. Natl. Acad. Sci. USA 92, 8308 (1995).

    Article  Google Scholar 

  7. R. K. Murakra, and T. Head-Gordon, J. Phys. Chem. B 112, 179 (2008).

    Article  Google Scholar 

  8. N. Nandi, K. Bhattacharyya, and B. Bagchi, Chemical Reviews 100, 2013 (2000)Jun.

    Article  Google Scholar 

  9. P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak, Proc. Natl. Acad. Sci. USA 99, 16047 (2002).

    Article  Google Scholar 

  10. D. P. Zhong, S. K. Pal, D. Q. Zhang, S. I. Chan, and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99, 13 (2002).

    Article  Google Scholar 

  11. L. Zhang et al., Proc Natl Acad Sci USA 104, 18461 (2007)Nov 20.

    Article  Google Scholar 

  12. B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, Faraday Discuss. 141, 161 (2009).

    Article  Google Scholar 

  13. S. Ebbinghaus et al., Proc. Natl. Acad. Sci. USA 104, 20749 (2007).

    Article  Google Scholar 

  14. S. V. Evans, and G. D. Brayer, J. Mol. Biol. 213, 885 (1990).

    Article  Google Scholar 

  15. S. Dexheimer, Terahertz spectroscopy: principles and applications. (Taylor & Francis, London, 2007)pp.

    Google Scholar 

  16. D. M. Leitner, M. Havenith, and M. Gruebele, Int. Rev. Phys. Chem. 25, 553 (2006).

    Article  Google Scholar 

  17. P. H. Siegel, IEEE Trans. Microwave Theor. Tech 50, 910 (2002).

    Article  Google Scholar 

  18. P. H. Siegel, IEEE Trans. Microwave Theor. Tech 52, 2438 (2004).

    Article  Google Scholar 

  19. J. Xu, K. W. Plaxco, and S. J. Allen, Prot. Sci. 15, 1175 (2006).

    Article  Google Scholar 

  20. J.-Y. Chen, J. R. Knab, J. Cerne, A. G. Markelz, Phys. Rev. E 72, 040901(R) (2005).

  21. D. M. Leitner, M. Gruebele, and M. Havenith, HFSP Journal 2, 314 (2008).

    Article  Google Scholar 

  22. B. Born, H. Weingärtner, E. Bründermann, M. Havenith, J. Am. Chem. Soc. (2009) doi:10.1021/ja808997y.

  23. S. Ebbinghaus et al., J. Am. Chem. Soc. 130, 2374 (2008).

    Article  Google Scholar 

  24. T. Arikawa, M. Nagai, and K. Tanaka, Chem. Phys. Lett. 457, 12 (2008).

    Article  Google Scholar 

  25. P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277, 478 (1997).

    Article  Google Scholar 

  26. S. Ebbinghaus et al., Proc. Nat. Acad. Sci. USA 104, 20749 (2007).

    Article  Google Scholar 

  27. U. Heugen et al., Proc. Natl. Acad. Sci. USA 103, 12301 (2006).

    Article  Google Scholar 

  28. M. Heyden et al., J. Am. Chem. Soc. 130, 5773 (2008).

    Article  Google Scholar 

  29. J. R. Knab, J. Y. Chen, Y. He, and A. G. Markelz, Proc. IEEE 95, 1605 (2007).

    Article  Google Scholar 

  30. A. G. Markelz, IEEE J. Sel. Top. Quantum Electron. 14, 180 (2008).

    Article  Google Scholar 

  31. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, Chem. Phys. Chem. 8, 2412 (2007).

    Google Scholar 

  32. J. Xu, K. W. Plaxco, and S. J. Allen, J. Phys. Chem. B. 110, 24255 (2006).

    Article  Google Scholar 

  33. C. F. Zhang, and S. M. Durbin, J. Phys. Chem. B. 110, 23607 (2006).

    Article  Google Scholar 

  34. S. E. Whitmire et al., Biophys. J. 85, 1269 (2003).

    Article  Google Scholar 

  35. J. Knab, J. Y. Chen, and A. G. Markelz, Biophys. J. 90, 2576 (2006).

    Article  Google Scholar 

  36. A. G. Markelz, J. R. Knab, and J. Y. Chen, Chem. Phys. Lett. 442, 413 (2007).

    Article  Google Scholar 

  37. K. Wood et al., J. Am. Chem. Soc. 130, 4586 (2008).

    Article  Google Scholar 

  38. J. A. Rupley, G. Careri, Adv. Protein Chem. 41 (1991).

  39. C. Schröder, T. Rudas, S. Boresch, and O. Steinhauser, J. Chem. Phys. 124, 234907 (2006).

    Article  Google Scholar 

  40. B. Bagchi, Chem. Rev. 105, 3197 (2005).

    Article  Google Scholar 

  41. R. Elber, and M. Karplus, Phys. Rev. Lett. 56, 394 (1986).

    Article  Google Scholar 

  42. R. C. Herrick, and H. J. Stapleton, J. Chem. Phys. 65, 4778 (1976).

    Article  Google Scholar 

  43. D. M. Leitner, Ann. Rev. Phys. Chem. 59, 233 (2008).

    Article  Google Scholar 

  44. E. Bründermann et al., Opt. Express 14, 1829 (2006).

    Article  Google Scholar 

  45. R. Köhler et al., Nature 417, 156 (2002).

    Article  Google Scholar 

  46. B. S. Williams, Nature Photonics 1, 517 (2007).

    Article  Google Scholar 

  47. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Electron. Lett. 42, 89 (2006).

    Article  Google Scholar 

  48. C. A. Schmuttenmaer, Chem. Rev. 104, 1759 (2004).

    Article  Google Scholar 

  49. M. Tonouchi, Nature Photonics 1, 97 (2007).

    Article  Google Scholar 

  50. A. Bergner et al., Rev. Sci. Inst. 76, 063110 (2005).

    Article  Google Scholar 

  51. E. Bründermann, B. Born, S. Funkner, M. Krüger, and M. Havenith, Proc. SPIE 7215, 72150E (2009).

    Article  Google Scholar 

  52. W. Block, Sci. Prog. 86, 77 (2003).

    Article  Google Scholar 

  53. J. H. Crowe, L. M. Crowe, and D. Chapman, Science 223, 701 (1984).

    Article  Google Scholar 

  54. S. J. Kim, B. Born, M. Havenith, and M. Gruebele, Angew. Chem. Int. Ed. Engl. 47, 6486 (2008).

    Article  Google Scholar 

  55. D. E. Rosenfeld, and C. A. Schmuttenmaer, J. Phys. Chem. B. 110, 14304 (2007).

    Article  Google Scholar 

  56. Q. Wu, and X.-C. Zhang, Appl. Phys. Lett. 71, 1285 (1997).

    Article  Google Scholar 

  57. E. Larios, J. S. Li, K. Schulten, H. Kihara, M. Gruebele, J. Mol. Biol. 340 (2004).

Download references

Acknowledgment

The authors thank M. Heyden for designing some of the figures and E. Bründermann for helpful discussions and carefully reading the manuscript. BB wishes to thank the German Academic Exchange Program (DAAD) and the Ruhr-University Research School for financial support. MH gratefully acknowledges the Human Frontier Science Program for funding. We also thank Martin Gruebele and David Leitner for their constant scientific input and driving enthusiasm for the development of THz spectroscopy as a tool to study solvated proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Havenith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Born, B., Havenith, M. Terahertz Dance of Proteins and Sugars with Water. J Infrared Milli Terahz Waves 30, 1245–1254 (2009). https://doi.org/10.1007/s10762-009-9514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9514-6

Keywords

Navigation