Skip to main content
Log in

Clutter Suppression Method Based on Spatiotemporal Anisotropic Diffusion for Moving Point Target Detection in IR Image Sequence

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper deals with the problem of moving point target detection against cluttered background in infrared image sequence. In this area, clutter suppression is a critical issue because of high false alarm rate caused by complicated clutter. Here the three-dimensional spatiotemporal anisotropic diffusion model, in which inter-frame diffusion takes place as well as intra-frame diffusion, is investigated and a moving point target detection method based on this model is presented with the hope of improvement of clutter suppression performance. The method is evaluated and the optimum values of its parameter on different conditions are found by comparative experiments. The image sequences used in the experiments are generated by using available real-world infrared images and simulated moving point targets. Experimental results show that the method performs well under cluttered situations and enhances the detectability of moving point targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N. Acito, G.Corsini, M. Diani, and G. Pennucci, Comparative analysis of clutter removal techniques over experimental IR images, Opt. Eng., 44 (10), 106401-1-106401-10 (2005).

    Google Scholar 

  2. I. Pitas, and A. N. Venetsanopoulos, Nonlinear Mean Filters in Image Processing. IEEE Tans. Acoustics, Speech, and Signal Processing Vol.ASSP-34(No.3), 573–584 (1986).

    Article  Google Scholar 

  3. S. D. Deshpande, M. H. Er, V. Ronda, and P. Chan, Max-Mean and Max-Median filters for detection of small-targets. Proc. SPIE 3809, 74–83 (1999).

    Article  Google Scholar 

  4. C. E. Caefer, J. Silverman, J. M. Mooney, S. DiSalvo, and R. W. Taylor, Temporal filtering for point target detection in staring IR imagery: I. damped sinusoid filters. Proc. SPIE 3373, 111–122 (1998).

    Article  Google Scholar 

  5. I. Reed, R. Gagliardi, and L. Stotts, Optical Moving Target Detection With 3-D Matched Filtering. IEEE Tans, Aerospace and Electronic Systems 24(4), 327–336 (1988).

    Article  Google Scholar 

  6. G. A. Lampropoulos, and J. F. Boulter, Filtering of Moving Targets Using SBIR Sequential Frames. IEEE Tans., Aerospace and Electronic Systems 31(4), 1255–1267 (1995).

    Article  Google Scholar 

  7. U. Braga-Neto, M. Choudhary, and J. Goutsias, Automatic Target Detection and Tracking in Forward-looking Infrared Image Sequences Using Morphological Connected Operators. Journal of Electronic Imaging 13(4), 802–813 (2004).

    Article  Google Scholar 

  8. R. Succary, A. Cohen, Yaractzi, and S. R. Rotman, A Dynamic Programming Algorithm for Point Target Detection:Practical Parameters for DPA. Proc. SPIE 4473, 96–100 (2001).

    Article  Google Scholar 

  9. R.-J. Liou, and M. R. Azimi-Sadjadi, Dim Target Detection Using High Order Correlation Method. IEEE Tans. Aerospace and Electronic Systems 29(3), 841–856 (1993).

    Article  Google Scholar 

  10. G.-D. Wang, C. Y. Chen, and X. B. Shen, Facet-based infrared small target detection method. Electronics Letters 27th 41(22), (2005).

  11. P. Perona, and J. Malik, Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12(7), 629–639 (1990).

    Article  Google Scholar 

  12. M. Li, T. X. Zhang, Z. R. Zuo, X. C. Sun, and W. D. Yang, Novel dim target detection and estimation algorithm based on double threshold partial differential equation. Opt. Eng. Lett. 45(9), 090502–1-090502-3 (2006).

    Google Scholar 

  13. M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, Robust Anisotropic Diffusion. IEEE Trans. Image Processing 7(3), 421–432 (1998).

    Article  Google Scholar 

  14. L. Alvarez, L. Mazorra, and F. Santana, Image restoration scale space. Proc. SPIE 2567, 40–49 (1995).

    Article  Google Scholar 

  15. Faouzi Benzarti, Ezzedine Ben Braiek, and Hamid Amiri, Motion Blurred Image Deconvolution with Anisotropic Regularization, IEEE First International Symposium on Control, Communications and Signal Processing, 443-446 (2004).

  16. Y. L. You, and M. Kaveh, Fourth-Order Partial Differential Equations for Noise Removal. IEEE Trans. Image Processing 9(10), 1723–1730 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Ceccarelli, V. De Simone, and A. Murli, Well-posed anisotropic diffusion for image denoising. IEE Proc. Vision, Image and Signal Process 149(4), 244–252 (2002).

    Article  Google Scholar 

  18. Y.-L. You, and M. Kaveh, Image Enhancement Using Fourth Order Partial Differential Equations. IEEE Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers Vol.2, 1677–1681 (1998).

    Article  Google Scholar 

  19. C. A. Segall, and S. T. Acton, Morphological Anisotropic Diffusion. IEEE International Conference on Image Processing Vol.3, 348–351 (1997).

    Article  Google Scholar 

  20. S. A. Bakalexis, Y. S. Boutalis, and B. G. Mertzios, Edge Detection and Image Segmentation based on Nonlinear Anisotropic Diffusion. IEEE 14th International Conference on Digital Signal Processing Vol.2, 1203–1206 (2002).

    Google Scholar 

  21. H. Scharr, and H. Spies, Accurate optical flow in noisy image sequences using flow adapted anisotropic diffusion, Signal Process. Image Communication 20, 537–553 (2005).

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the Project of the National Natural Science Foundation of China under Grant No.60736010 and the Project of the National Defense Fundamental Research of China under Grant No.A1420080147. The authors would like to thank the anonymous reviewers for their valuable comments and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiechang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Zhang, T., Yan, L. et al. Clutter Suppression Method Based on Spatiotemporal Anisotropic Diffusion for Moving Point Target Detection in IR Image Sequence. J Infrared Milli Terahz Waves 30, 496–512 (2009). https://doi.org/10.1007/s10762-009-9479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9479-5

Keywords

Navigation