Twin Symmetric E-plane Slab Loaded Waveguide Structure for Point Beam Acceleration

  • H. Zafar
  • J. ZafarEmail author
  • A. A. P. Gibson
  • K. Masood


Renewed interest regarding the exploitation of dielectric loaded waveguides in high gradient accelerator structures requires a closed form field formulation as cut-off frequencies and optimisation are problematic for numerical methods. In this paper we will present efficient closed form solution for generic slab loaded waveguide boundary value problems. This solution offers flexibility in a sense that it can be further exploited to derive a Green’s function linking transverse field expressions for planar structures. The developed solution is demonstrated for a twin slab E-plane slab loaded structure coupled to a Point source emitter assembly. The emission characteristics of the point source emitter assembly are optimized to generate a high intensity and focused beam to be fed to this E-plane slab loaded waveguide structure for beam acceleration. The field analysis, mode nomenclature, modal hierarchy, modal bandwidth, cut-off plane, impedance plane and dispersion relations for this accelerating structure is included for sake the of completeness.


Dielectric waveguides Modal bandwidth Impedance plane Closed form solution 



The authors wish to acknowledge Ms Tasneem Zafar for her valuable suggestions. Mr. Arthur Haigh and Mr. William Keith contributed to the material development work. Mr. Junaid Zafar is funded by a Pakistani Government HEC scholarship award.


  1. 1.
    S. E. Korbly, A. S. Kesar, and R. J. Temkin, Observation of frequency locked coherent terahertz Smith Purcell radiation. Phys. Rev. Lett. 94, 2005.Google Scholar
  2. 2.
    Kwan, and J. L. Hirshfield, Theory of Wake Fields in a multizone dielectric lined waveguide. Phys. Rev. ST. Accel. Beams 9(3), (2006).Google Scholar
  3. 3.
    E. L. Chu, and W. W. Hansen, The theory of disc loaded waveguide. J. Appl. Phys. 18, 996–1008 (1947).CrossRefGoogle Scholar
  4. 4.
    R. B. Yoder, and J. B. Rosenzweig, Side coupled slab symmetric structure for high gradient acceleration using THz Power. Phys. Rev. ST. Accel. Beams 8(11), 2005.Google Scholar
  5. 5.
    C. Rauscher, Design of dielectric –filled cavity filters with ultra wide stopband characteristics. IEEE Trans. Microw. Theory Tech. 53, 1918–1926 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Amari, R. Vahldieck, and J. Bornemann, Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues. IEEE Trans. Microw. Theory Tech. 48, 453–460 (2000).CrossRefGoogle Scholar
  7. 7.
    J. B. Rosenzweig, B. Breizman, T. Katsouleas, and J. J. Su, Acceleration and focusing of electrons in two dimensional non-linear Plasma Wake fields. Phys. Rev A. 44(10), 6189–6192 (1991), Nov.CrossRefGoogle Scholar
  8. 8.
    A. Tremaine, X. J. Wang, M. Babzein, and J. Rosenzweig, Fundamental and Harmonic microbunching in high-gain self amplified spontaneous emission free-electron laser. Phys. Rev. E. 66(3), 36503–36506 (2002).CrossRefGoogle Scholar
  9. 9.
    C. Jing, W. Gai, R. Konencny, S. H. Gold, W. Liu, and A. K. Kinkead, High power RF test on X-Band dielectric loaded accelerating structures. IEEE Trans. Plasma Sci. 33(4), 1155–1160 (2005).CrossRefGoogle Scholar
  10. 10.
    S. K. Pash, and J. L. Hirshfield, Theory of wake fields in a dielectric lined waveguide. Phys. Rev E. 62(1), 1266–1283 (2000).CrossRefGoogle Scholar
  11. 11.
    A. Tremaine, and J. Rosenzweig, Electromagnetic wake fields and beam stability in slab symmetric dielectric structures. Phys. Rev E. 56(6), 7204–7216 (1997).CrossRefGoogle Scholar
  12. 12.
    L. G. Shen, and L. Y. Gu, Hybrid mode analysis of a slow–wave free electron laser with a rectangular guide loaded with two slabs of dielectric. Phys. Rev E. 50(5), 4262–4264 (1994).CrossRefGoogle Scholar
  13. 13.
    Y. Y. Lau, Classification of Beam Break–up instabilities in linear accelerators. Phys. Rev. Lett. 63(11), 1141–1144 (1989), Sep.CrossRefGoogle Scholar
  14. 14.
    L. Xiao, W. Gai, and X. Sun, Field Analysis of a dielectric loaded Rectangular waveguide accelerating structure. Phys. Rev E. 65, 2001.Google Scholar
  15. 15.
    P. Zhou, W. Gai, and X. Sun, Construction and testing of 11.4 GHz dielectric structure based Travelling wave accelerator. Rev. Sci. Instr. 71, 2000.Google Scholar
  16. 16.
    W. K. H. Panofsky, and W. A. Wenzel, Some considerations concerning the transverse deflections of charged particles in radio-frequency fields. Rev. Sci. Instr. 27, 1956.Google Scholar
  17. 17.
    H. H. Braun, CERN CLIC Note 364, 1998.Google Scholar
  18. 18.
    T. B. Zhang, J. L. Hirshfield, T. C. Marshall, and B. Hafizi, Simulated dielectric wake field accelerator. Phys. Rev. E 56, 4647–4655 (1997), Oct.CrossRefGoogle Scholar
  19. 19.
    K. Yuan Ng, Wakefield in a dielectric lined waveguide. Phys. Rev D. 42, 1819–1828 (1990).CrossRefGoogle Scholar
  20. 20.
    J. G. Power, W. Gai, and P. Schoessow, Wakefield excitation in multi-mode structures by a train of electron bunches. Phys. Rev E. 60(5), 1819–1828 (1991), Nov.Google Scholar
  21. 21.
    W. Gai, A. D. Kanareykin, A. L. Kustov, and J. Simpson, Numerical simulations of intense charged particle beam propagation in dielectric wake field accelerator. Phys. Rev E. 55(3), 3481–3488 (1997).CrossRefGoogle Scholar
  22. 22.
    M. Rosing, and W. Gai, Longitudinal and transverse wake field effects in dielectric structures. Phys. Rev D. 42, 1829–1834 (1990).CrossRefGoogle Scholar
  23. 23.
    W. Gai, P. Schoessow, B. Cole, R. Konencny, J. Norem, J. Rosenzweig, and J. Simpson, Experimental demonstration of wake-Fields effects in dielectric structures. Phys. Rev. Lett. 24, 2756–2758 (1988).CrossRefGoogle Scholar
  24. 24.
    J. Rosenzweig, D. B. Cline, B. Cole, H. Figuero, W. Gai, R. Konencny, J. Norem, P. Schoessow, and J. Simpson, Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61(1), 98–101 (1988).CrossRefGoogle Scholar
  25. 25.
    H. Figuero, W. Gai, R. Konencny, J. Norem, P. Schoessow, and J. Simpson, Direct measurement of beam induced fields in accelerating structures. Phys. Rev. Lett. 60(21), 2144–2147 (1998).CrossRefGoogle Scholar
  26. 26.
    W. Gai, and P. Schoessow, Design and simulation of high frequency, high power rf extraction device using a dielectric loaded waveguide. Nucl. Instrum. Methods Phys. Res. A 459(2001).Google Scholar
  27. 27.
    C. Jing, W. M. Liu, W. Gai, J. G. Pover, and T. Wong, Modal analysis of multilayered dielectric loaded accelerating structure. Nucl. Intrum. Methods Phys. Res. B. 539(3), 445–454 (2005), March.CrossRefGoogle Scholar
  28. 28.
    K. Bierwirth, N. Schulz, and F. Arndt, Finite difference analysis of rectangular dielectric waveguide structures. IEEE Microw. Theor. Trans. 34(11), 1104–1114 (1986), Nov.CrossRefGoogle Scholar
  29. 29.
    W. E. Boyse, D. R. Lynch, K. D. Paulsen, and G. N. Minerbo, Nodal based Finite Element modelling of Maxwell’s equation in three dimensions. IEEE Trans. Antenna & Propag. 40, 642–651 (1992).zbMATHCrossRefGoogle Scholar
  30. 30.
    J. B. McGinn, L. W. Swanson, and N. A. Martin, J. Vac. Sci. Technol. B9, 2925–2928 (1991).Google Scholar
  31. 31.
    T. Ohgo, T. Hara, M. Hamagaki, K. Ishii, and M. Otsuka, J. Appl. Phys. 70, 4050–4052 (1991).CrossRefGoogle Scholar
  32. 32.
    K. C. Mooffiet, in Proc. 9th Int. Symp., High Energy Spin Physics. (Bonn, Germany, 1990).Google Scholar
  33. 33.
    S. Schiller, U. Heisig, and S. Panzer, Electron beam technology. John Wiley & Sons, Inc., (1982) 50,190–192.Google Scholar
  34. 34.
    K. Saito, and Y. Uno, Nucl. Inst. Meths A 363, 48–53 (1995).CrossRefGoogle Scholar
  35. 35.
    K. Masood, M. Iqbal, S. A. Bhatti, and M. Zakaullah, Nucl. Inst. Meth. Phys. Research A 584(1), 9–24 (2008).CrossRefGoogle Scholar
  36. 36.
    Z. J. Cendes, and P. Silvester, Numerical Solution of dielectric loaded waveguides: I. Finite element analysis. IEEE Microw. Theory Trans. 18, 1124–1131 (1970).CrossRefGoogle Scholar
  37. 37.
    K. Isle, and M. Koshiba, Numerical analysis of H-plane waveguide junctions by combination of finite and boundary element. IEEE Microw. Theory Trans. 36(9), 1343–1351 (1988), Sep.CrossRefGoogle Scholar
  38. 38.
    C. T. Liu, and C. H. Chen, A variational theory for wave propagation in inhomogeneous dielectric slab loaded waveguides. IEEE Microw. Theory Trans. 29, 805–812 (1981), Aug.CrossRefGoogle Scholar
  39. 39.
    D. T. Thomas, Functional approximation for solving boundary value problems by computer. IEEE Microw. Theory Trans. 17(8), 447–454 (1969), Aug.CrossRefGoogle Scholar
  40. 40.
    M. Koshiba, and M. Suzuki, Application of boundary element method to waveguide discontinuities. IEEE Microw. Theory Trans. 34, 301–307 (1986), Feb.CrossRefGoogle Scholar
  41. 41.
    Y. Mushiake, and T. Ishida, Characteristics of loaded rectangular waveguides. IEEE Microw. Theory Trans. 13(4), 451–457 (1965), Jul.CrossRefGoogle Scholar
  42. 42.
    R. H. Jansen, The spectral domain approach for microwave integrated circuits. IEEE Microw. Theory Trans. 33(10), 1043–1056 (1985), Oct.CrossRefGoogle Scholar
  43. 43.
    T. Itoh, and R. Mittra, Spectral domain approach for calculating dispersion characteristics of microstrip lines. IEEE Microw. Theory Trans. 33(10), 496–499 (1973), Oct.CrossRefGoogle Scholar
  44. 44.
    K. Solbach, and I. Wolf, The Electromagnetic field and phase constants of dielectric image lines. IEEE Microw. Theory Trans. 26, 266–274 (1978), Apr.CrossRefGoogle Scholar
  45. 45.
    A. S. Subdo, Improved formulation of the film mode matching method for mode field calculation in dielectric waveguides. Pure Appl. Opt. 3, 381–383 (1994).CrossRefGoogle Scholar
  46. 46.
    L. E. Lebraic, and D. Kajfez, Analysis of dielectric resonator cavities using finite integration technique. IEEE Microw. Theory Trans. 37(11), 1740–1748 (1989), Nov.CrossRefGoogle Scholar
  47. 47.
    V. Catina, and F. Arndt, Hybrid surface integral equation /Mode matching method for the analysis of dielectric loaded waveguide filters. IEEE Microw. Theory Trans. 53(11), 3562–3567 (2005), Nov.CrossRefGoogle Scholar
  48. 48.
    F. Allesandri, and D. Schimdt, The electric field integral equation method for the analysis and design of rectangular cavity filters loaded by dielectric and metallic cylinder pucks. IEEE Microw. Theory Trans. 52(8), 1790–1797 (2004), Aug.CrossRefGoogle Scholar
  49. 49.
    G. P. Bava, and C. Naldi, Discussion of some design methods for dielectric steps in rectangular waveguides. IEEE Microw. Theory Trans. 18(3), 167–168 (1970), Mar.CrossRefGoogle Scholar
  50. 50.
    V. Bilik, and R. N. Simons, On Mode classification in rectangular waveguide partially filled with dielectric slabs. IEEE Microw. Theory Trans. 34(2), 297–298 (1986), Feb.CrossRefGoogle Scholar
  51. 51.
    K. Oqusu, Experimental study of dielectric waveguide Y-junctions for millimetre–wave integrated circuits. IEEE Microw. Theory Trans. 33(6), 506–509 (1985), Jun.CrossRefGoogle Scholar
  52. 52.
    M. Cohn, Propagation in a dielectric –loaded parallel plane waveguide. IEEE Microw. Theory Trans. 7(2), 202–208 (1959), Apr.CrossRefGoogle Scholar
  53. 53.
    J. J. Choi, C. M. Armstrong, A. K. Gangulay, and L. M. Barsanti, Design of a 50 KW wideband Ka-band slow wave cyclotron amplifier. IEEE Microw. Theory Trans. 22(4), 465–475 (1994), Aug.Google Scholar
  54. 54.
    J. G. Ma, Numerical analysis of the characteristics of TE modes of waveguides loaded with inhomogeneous dielectrics. IEE Proc-H, 139(1), 109–112 (1991), Feb.Google Scholar
  55. 55.
    K. Mehray, and B. Rashielein, Polynomial expansion for extraction of electromagnetic Eigen modes in layered structures. J. Opt. Soc. Am. B. 20, 2434–2441 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. Zafar
    • 1
  • J. Zafar
    • 2
    Email author
  • A. A. P. Gibson
    • 2
  • K. Masood
    • 3
  1. 1.Electromagnetic and Microwave Research GroupUniversity of South AsiaLahorePakistan
  2. 2.Microwave and Communication Systems Research Group, School of Electrical & Electronic EngineeringUniversity of ManchesterManchesterUK
  3. 3.Department of PhysicsINMOLLahorePakistan

Personalised recommendations