Skip to main content
Log in

Rectangular Microstirp Patch Antenna Design at THz Frequency for Short Distance Wireless Communication Systems

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we have presented the simulation results of a rectangular microstrip patch antenna at terahertz (THz) frequency ranging from 0.7 to 0.85 THz. THz electromagnetic wave can permit more densely packed communication links with increased security of communication transmission. The simulated results such as gain, radiation efficiency and 10 dB impedance bandwidth of rectangular microstrip patch antenna at THz frequencies without shorting post configuration are 3.497 dB, 55.71% and 17.76%, respectively, whereas with shorting post configuration, corresponding parameters are 3.502 dB, 55.88% and 17.27%. The simulation has been performed by using CST Microwave Studio, which is a commercially available electromagnetic simulator based on the method of finite difference time domain technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Galoda, and G. Singh, Terahertz technology ─ an emerging electromagnetic spectrum, Proc. International Conference on Information and Communication Technology (IICT-2007). (DIT Dehradoon, India, 2007, )pp. 482–486 July 26-28.

    Google Scholar 

  2. S. Galoda, and G. Singh, “Fighting terrorism with terahertz”. IEEE Potential Magazine 26(6), 24–29 (2007)Dec.

    Article  Google Scholar 

  3. J. Grade, P. Haydon, and D. V. Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”. Proc. IEEE 95(8), 1583–1591 (2007)Aug.

    Article  Google Scholar 

  4. P. Kumar, A. K. Singh, G. Singh, T. Chakravarty and S. Bhooshan. “Terahertz technology – a new direction.” Proc. IEEE Int. Symp. Microwave, pp. 195-201 (2006).

  5. S. P. Mickan, and X.-C. Zhang, Terahertz Sensing Technology, edited by D. L. Woolard, W. R. Loerop, and M. S. Shur (World Scientific, Singapore, 2003).

  6. D. R. Vizard, “Millimeter-wave applications: from satellite communications to security systems.” Microw J, pp. 22-36, July 2006.

  7. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photo mixing upto 3.8 THz in low temperature grown GaAs”. Appl. Phys. Lett 66, 285–287 (1995)Jan.

    Article  Google Scholar 

  8. S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low temperature GaAs photomixer”. Appl. Phys. Lett 71, 2743–2745 (1997)Nov.

    Article  Google Scholar 

  9. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissnev, and H. L. Hastnagel, “Spectral characterization of broadband THz antennas by photoconductive mixing; Towards optimal antenna design”. IEEE Antenna Wireless Propagation Lett 4, 85–88 (2005).

    Article  Google Scholar 

  10. I. G. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missons, “Resonant dipole antennas for continuous wave terahertz photomixers”. Appl. Phys. Lett 85, 1622–1624 (2004)Jan.

    Article  Google Scholar 

  11. M. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas”. Appl. Phys. Lett 70, 559–561 (1997).

    Article  Google Scholar 

  12. F. K. Schwering, “Millimeter wave antenna”. Proc. IEEE 80(1), 92–102 (1992)Jan.

    Article  Google Scholar 

  13. T. Seki, N. Honma, K. Nishikawa, and K. Tsunekawa, “Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on Teflon substrate”. IEEE Trans. Microwave Theor. Techniques 53(6), 2101–2106 (2005)June.

    Article  Google Scholar 

  14. D. M. Pozar, “Microstrip antennas”. Proc. IEEE 80(1), 79–91 (1992).

    Article  Google Scholar 

  15. A. A. Abdelaziz, “Bandwidth enhancement of microstrip antenna”. Prog. Electromagn. Res 63, 311–317 (2006).

    Article  Google Scholar 

  16. R. Garg, and V. S. Reddy, “Edge feeding of microstrip ring antennas”. IEEE Trans. Antenna Propag 51(8), 1941–1946 (2003)Aug.

    Article  Google Scholar 

  17. M. Saed, and R. Yadla, “Microstrip-fed low profile and compact dielectric resonator antenna”. Prog. Electromag. Res 56, 151–162 (2006).

    Article  Google Scholar 

  18. A. Sharma, V. K. Dwivedi and G. Singh, “THz rectangular patch microstrip antenna design using photonic crystal as substrate,” Proc. Progress In Electromagnetic Research Symposium (PIERS 2008), pp. 161-165, July 2-6, 2008, Cambridge, USA.

  19. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concept and perspectives”. IEEE Antennas Propag. Mag 49(6), 24–38 (2007)Dec.

    Article  Google Scholar 

  20. A. Sharma, and G. Singh, “Design of single pin shorted three dielectric layered substrates rectangular patch microstrip antenna for communication systems.” Prog. Electromag. Res. Lett 2, 157–165 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Singh, G. Rectangular Microstirp Patch Antenna Design at THz Frequency for Short Distance Wireless Communication Systems. J Infrared Milli Terahz Waves 30, 1–7 (2009). https://doi.org/10.1007/s10762-008-9416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9416-z

Keywords

Navigation