Skip to main content
Log in

Imaging Properties of a Line Source Using General Anisotropic Metamaterials

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We investigate the general dispersion relationship of anisotropic media theoretically. According to the dispersion relationship, we study the perfect imaging conditions by a slab of anisotropies negative refractive index media in details, Numerical results have proved our predictions for TE waves. For slab of gyrotroptic media, if a gyrotroptic parameter is small enough, the gyroteoptic slab can become nearly perfect lens using the perfect conditions of TE and TM mixed modes. We have shown that perfect imaging cannot occur in the case of larger gyrotroptic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).

    Article  MathSciNet  Google Scholar 

  2. H. Y. Chen, and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105(1–3) (2007).

    Google Scholar 

  3. V. G. Veselago, “The electrodynamics of substances with simutaneously negative values of ϵ and μ,” Sov. Phys., Usp. 10(4), 509–514 (1968).

    Article  Google Scholar 

  4. J. B. Pendry, A. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  Google Scholar 

  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47(11), 2075–2084 (1999).

    Article  Google Scholar 

  6. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(4), 77–79 (2001).

    Article  Google Scholar 

  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simutaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

    Article  Google Scholar 

  8. R. A. Shelby, D. R. Smith, S. C. Nemet-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78(4), 489–491 (2001).

    Article  Google Scholar 

  9. D. R. Smith, and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000).

    Article  Google Scholar 

  10. D. R. Smith, S. Schultz, P. Markors, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B. 65, 195104(1–5) (2002).

    Article  Google Scholar 

  11. N. Garcia, and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Lett. 88(20), 207403(1–4) (2002).

    Article  Google Scholar 

  12. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B. 62, 10696–10705 (2000).

    Article  Google Scholar 

  13. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B. 65, 201104(1–4) (2002).

    Google Scholar 

  14. J. B. Pentry, and D. R. Smith, “Comment on ‘wave refraction in negative-index media: always positive and very inhomogeneous’,” Phys. Rev. Lett. 90(2), 029703 (2003).

    Article  Google Scholar 

  15. D. R. Smith, D. Schrig, and J. B. Pentry, “Negative refraction of modulated electromagnetic waves,” Appl. Phys. Lett. 81(7), 2713–2715 (2002)

    Article  Google Scholar 

  16. J. Pacheco Jr., T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89(26), 207401(1–4) (2002).

    Google Scholar 

  17. R. W. Ziolkowski, and N. Engheta, “Metamaterial special issue introduction, antennas and propagation,” IEEE Trans. 51(10), Part 1, 2546–2549 (2003).

    Google Scholar 

  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  Google Scholar 

  19. R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B. 65(4), 144440(1–6) (2002).

    Article  Google Scholar 

  20. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indenite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).

    Article  Google Scholar 

  21. L. Yonghua, W. Pei, Y. Peijun, X. Jianping, and M. Hai, “Negative refraction at the interface of uniaxial anisotropic media,” Opt. Commun. 246, 429C435 (2005).

    Article  Google Scholar 

  22. Z. Liu, H. Liangbin, and L. Zhifang, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A 308, 294–301 (2003).

    Article  Google Scholar 

  23. H. Liangbin, and S. T. Chui, “Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials,” Phys. Rev. B 66, 085108(1–7) (2002).

    Google Scholar 

  24. H. X. Da, C. Xu, Z. Y. Li, et al., “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E 71, 066612 (2005).

    Article  Google Scholar 

  25. M. K. KarKKainen, “Numerical study of wave propagation in uniaxially anisotropic Lorentzian backward-wave slabs,” Phys. Rev. E 68(2), 026602(1–6) (2003).

    Article  Google Scholar 

  26. P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microw. Opt. Technol. Lett. 37(4), 259–263 (2003).

    Article  Google Scholar 

  27. Q. Cheng, and T. J. Cui, “Electromagnetic properties of a left-handed medium slab excited by three-dimensional electric dipoles,” Phys. Lett. A 345, 439–447 (2005).

    Article  MATH  Google Scholar 

  28. A. V. Ivanov, O. A. Kotelnikova, and V. A. Ivanov, “Gyrotropic left-handed media: energy flux and circular dichroism,” J. Magn. Magn. Mater. 300, 67–69 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China under Grant Nos. 60671015, 60225001, and 60621002, in part by the National Basic Research Program (973) of China under Grant No. 2004CB719802, and in part by the National Doctoral Foundation of China under Grant No. 20040286010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Guan-Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan-Xia, Y., Tie-Jun, C. Imaging Properties of a Line Source Using General Anisotropic Metamaterials. J Infrared Milli Terahz Waves 30, 71–84 (2009). https://doi.org/10.1007/s10762-008-9414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9414-1

Keywords

PACS

Navigation