Skip to main content
Log in

Synthesis of Optimal Sum and Difference Patterns from Time Modulated Hexagonal Planar Arrays

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

An efficient array synthesis technique is developed for the design of optimal monopulse antennas in time modulated planar arrays with triangular lattices and hexagonal boundaries. Major emphasis is laid on the realization of low sidelobe array patterns from uniform amplitude excitations, and the inherent sideband radiations in time modulated arrays are suppressed to a sufficient low level. The synthesis technique implements the differential evolution strategy (DES) as the optimization tool, and a fast computation method based on 2D Fast Fourier Transform (FFT) is employed to speed up the optimization. Numerical results show that with the aid of the time modulation technique, the sum, difference, and double-difference patterns are obtainable from an array with fixed uniform amplitude excitations, thus demonstrating the effectiveness and validity of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. H. Kummer, A. T. Villeneuve, T. S. Fong, and F. G. Terrio, Ultra-low sidelobes from time-modulated arrays. IEEE Trans. Antennas Propag. 11(5), 633–639 (1963).

    Article  Google Scholar 

  2. S. Yang, Y. B. Gan, and P. K. Tan, Linear antenna arrays with bidirectional phase center motion. IEEE Trans. Antennas Propag. 53(5), 1829–1835 (2005).

    Article  Google Scholar 

  3. S. Yang, and Z. Nie, Time modulated planar arrays with square lattices and circular boundaries. Int. J. Numer. Model. 18(5), 469–480 (2005).

    Article  MATH  Google Scholar 

  4. S. Yang, and Z. Nie, Millimeter-wave low sidelobe time modulated linear arrays with uniform amplitude excitations. Int. J. Infrared Millmeter. Waves 28(5), 531–540 (2007).

    Article  Google Scholar 

  5. S. Yang, and Z. Nie, Mutual coupling compensation in time modulated linear antenna arrays. IEEE Trans. Antennas Propag. 53(12), 4182–4185 (2005).

    Article  Google Scholar 

  6. S. Yang, and Z. Nie, Study of low sidelobe time modulated linear antenna arrays at millimeter-waves. Int. J. Infrared Millimeter Waves 26(3), 443–456 (2005).

    Article  Google Scholar 

  7. S. Yang, Y. B. Gan, A. Qing, and P. K. Tan, Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Trans. Antennas Propag. 53(7), 2337–2339 (2005).

    Article  Google Scholar 

  8. J. Fondevila, J. C. Brégains, F. Ares, and E. Moreno, Optimizing uniformly excited linear arrays through time modulation. IEEE Antennas and Wireless Propagat. Lett. 3(1), 298–301 (2004).

    Article  Google Scholar 

  9. S. Yang, Y. B. Gan, and P. K. Tan, A new technique for power pattern synthesis in time modulated linear arrays. IEEE Antennas and Wireless Propagat. Lett. 2(1), 285–287 (2003).

    Article  Google Scholar 

  10. J. Fondevila, J. C. Brégains, F. Ares, and E. Moreno, Application of time modulation in the synthesis of sum and difference patterns by using linear arrays. Microw. Opt. Technol. Lett. 48(5), 829–832 (2006).

    Article  Google Scholar 

  11. E. D. Sharp, A triangular arrangement of planar-array elements that reduces the number needed. IRE. Trans. Antennas Propag. 9(2), 126–129 (1961).

    Article  Google Scholar 

  12. J. K. Hsiao, Properties of a nonisosceles triangular grid planar phased array. IEEE Trans. Antennas Propag. 20(4), 415–421 (1972).

    Article  MathSciNet  Google Scholar 

  13. E. Botha, and D. A. McNamara, The synthesis of difference patterns for planar arrays with rectangular and hexagonal laltices. Antennas Propag. Society Int. Symposium 3, 1274–1277 (1993).

    Google Scholar 

  14. P. Darwood, P. N. Fletcher, and G. S. Hilton, Difference pattern synthesis in small planar phased arrays. Electro. Lett. 33(20), 1664–1665 (1997).

    Article  Google Scholar 

  15. E. Botha, and D. A. McNamara, Direct synthesis of near-optimum difference patterns for planar arrays. Electro. Lett. 28(8), 753–754 (1992).

    Article  Google Scholar 

  16. S. Yang, Y. B. Gan, and P. K. Tan, Evaluation of directivity and gain for time-modulated linear antenna arrays. Microw. Opt. Technol. Lett. 42(2), 167–171 (2004).

    Article  Google Scholar 

  17. A. Qing, Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propagat. 51(6), 1251–1262 (2003).

    Article  MathSciNet  Google Scholar 

  18. S. Yang, Y. B. Gan, and A. Qing, Antenna array pattern nulling using a differential evolution algorithm. Int. J. RF and Microwave Comput. Aided Eng. 14(1), 57–63 (2004).

    Article  Google Scholar 

  19. Y. Chen, S. Yang, and Z. Nie, Synthesis of uniform amplitude thinned linear phased arrays using the differential evolution algorithm. Electromagnetics 27(5), 287–297 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwen Yang.

Additional information

Supported in part by the Natural Science Foundation of China under Grant No. 60571023, the New Century Excellent Talent Program in China (Grant No. NCET-06-0809), and in part by the 111 project of China (Grant No. B07046).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Yang, S. & Nie, Z. Synthesis of Optimal Sum and Difference Patterns from Time Modulated Hexagonal Planar Arrays. Int J Infrared Milli Waves 29, 933–945 (2008). https://doi.org/10.1007/s10762-008-9395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9395-0

Keywords

Navigation