Skip to main content
Log in

Diamond Schottky Contact Transit-time Diode for Terahertz Power Generation

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A diamond mixed tunneling and avalanche transit-time diode is designed in this letter. Schottky contact is used in this kind of diode to reduce the contact resistance. Electrical characteristics of n-type diamond Schottky contact have been accurately investigated. Total output power of such transit-time diode is evaluated using an accurate large-signal model. The results indicate that the new type transit-time diode can operate with the frequency up to several terahertzes. The output power density is more than 1.185 MW/cm2 from 1.07 to 2.12THz. About 17% improvement in efficiency is found at 2.12THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Ferguson, and X.-C. Zhang, Materials for terahertz science and technology. Nat. Materials 1, 26–33 (2002).

    Article  ADS  Google Scholar 

  2. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 99–105 (2007).

    Article  Google Scholar 

  3. P.H. Siegel, Terahertz technology. IEEE Trans. MTT-50, 910–928 (2002).

    Google Scholar 

  4. H. Eisele, Active two-terminal devices as sources at THz frequencies: concepts, performance, and trends. Proc. SPIE 6257, 62570G (2006).

    Article  Google Scholar 

  5. M.E. Elta, and G.I. Haddad, High-frequency limitations of IMPATT, MITATT, and TUNNETT mode devices. IEEE Trans. MTT-27, 442–449 (1979).

    Google Scholar 

  6. R.J. Trew, High-frequency solid-state electronic devices. IEEE Trans. ED-52, 638–649 (2005).

    ADS  Google Scholar 

  7. P.W. May, Diamond thin films: a 21st-century material. Phil. Trans. R. Soc. Lond. A 358, 473–495 (2000).

    Article  ADS  Google Scholar 

  8. D.S. Hwang, T. Saito, and N. Fujimori, New etching process for device fabrication using diamond. Diamond and Related Materials 13, 2207–2210 (2004).

    Article  Google Scholar 

  9. C.-C. Chen, R.K. Mains, G.I. Haddad, and H. Eisele, Structure and simulation of GaAs TUNNETT and MITATT devices for frequencies above 100 GHz. Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, Cornell University, pp.194-202, (1993), August 2-4.

  10. S.O. Scanlan, and T.J. Brazil, Large-signal computer simulation of IMPATT diodes. IEEE Trans. ED-28, 18–21 (1981).

    ADS  Google Scholar 

  11. P.M. Mock, Material and design parameter effects in IMPATT Diodes, Ph. D Thesis, North Carolina State University, pp.67-102, (1991)

  12. R.J. Trew, J.B. Yan, and P.M. Mock, The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79(5), 598–620 (1991).

    Article  ADS  Google Scholar 

  13. K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices. (Springer-Verlag, Berlin Heidelberg, 2007, )pp. 28–31.

    Google Scholar 

  14. M.W. Geis, N.N., Efremow, K.E. Krohn, and J.C. Twichell, Theory and experimental results of a new diamond surface-emission cathode. Linc. Lab. J. 10(1), 3–16 (1997).

    Google Scholar 

  15. H. Taniuchi, H. Umezawa, T. Arima, M. Tachiki, and H. Kawarada, High-frequency performance of diamond field-effect transistor. IEEE Electron Device Lett. 22, 390–392 (2001).

    Article  ADS  Google Scholar 

  16. J. Isberg, J. Hammersberg, E. Johansson, and T. Wikström, High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).

    Article  ADS  Google Scholar 

  17. A. Vescan, I. Daumiller, P. Gluche, W. Ebert, and E. Kohn, Very high temperature operation of diamond schottky diode. IEEE Electron Device Lett. 18(11), 556–558 (1997).

    Article  ADS  Google Scholar 

  18. M. Mukherjee, N. Mazumder, S.K. Roy, and K. Goswami, GaN IMPATT diode: a photo-sensitive high power terahertz source. Semicond. Sci. Technol. 22, 1258–1267 (2007).

    Article  ADS  Google Scholar 

  19. Coherent Inc., http://www.coherent.com/

  20. Microtech Instruments Inc., http://www.mtinstruments.com/

  21. B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005).

    Article  ADS  Google Scholar 

  22. B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, High-power terahertz quantum cascade lasers. Electron. Lett. 42, 89–91 (2006).

    Article  Google Scholar 

  23. G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz. Appl. Phys. Lett. 88, 141102 (2006).

    Article  ADS  Google Scholar 

  24. C. Worrall, J. Alton, M. Houghton, S. Barbieri et al., Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz. Opt. Express 14, 171–181 (2006).

    Article  ADS  Google Scholar 

  25. C. Walther, M. Fischer, G. Scalari, R. Terazzi et al., Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl. Phys. Lett. 91, 131122 (2007).

    Article  ADS  Google Scholar 

  26. A. Maestrini, J. Bruston, D. Pukala, and S. Martin, Performance of a 1.2 THz frequency tripler using a GaAs frameless membrane monolithic circuit. IEEE MTT-S Int. Microwave Symp. Dig. 3, 1657–1660 (2001).

    Google Scholar 

  27. A. Maestrini, J. Ward, J. Gill, H. Javadi et al., A 1.7-1.9 THz local oscillator source. IEEE Microw. Wirel. Compon. Lett. 14, 253–255 (2004).

    Article  Google Scholar 

  28. G. Chattopadhyay, E. Schlecht, J.S. Ward, J. Gill et al., An all-solid-state broad-band frequency multiplier chain at 1500 GHz. IEEE Trans. MTT-52, 1538–1546 (2004).

    Google Scholar 

  29. J. Ward, E. Schlecht, G. Chattopadhyay, A. Maestrini et al., Capability of THz sources based on Schottky diode frequency multiplier chains. IEEE MTT-S Int. Microw. Symp. Dig. 3, 1587–1590 (2004).

    Google Scholar 

Download references

Acknowledgments

The author wish to acknowledge financial support from the National Natural Science Foundation of China ( 60471017 & 60621002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T. Diamond Schottky Contact Transit-time Diode for Terahertz Power Generation. Int J Infrared Milli Waves 29, 634–640 (2008). https://doi.org/10.1007/s10762-008-9363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9363-8

Keywords

Navigation