Skip to main content
Log in

Analysis of Electromagnetic Scattering from Plasma Antenna Using CG-FFT Method

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A gaseous plasma column as an efficient radiator of electromagnetic waves is well known. This paper presents the scattering analysis of a plasma antenna using the conjugate gradient fast Fourier transform (CG-FFT) method. Radar cross sections (RCS) of designed plasma antenna for different plasma parameters are computed mainly. Numerical results show that the plasma antenna with appropriate parameters can offer lower RCS than the metal one. It is evident from the observed scattering characteristics that the plasma antenna can be regarded as a rod of imperfect conductor with losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. L. Kang, M. Rader, and I. Alexeff, “A conceptual study of stealth plasma antenna,” Proceedings of the 1996 IEEE International Conference on Plasma Science 261.

  2. I. Alexeff, W. L. Kang, M. Rader et al., “A plasma stealth antenna for the U. S. Navy,” Proceedings of the 1998 IEEE International Conference on Plasma Science 277.

  3. G. G. Borg, J. H. Harris, D. G. Miljak et al., “Application of plasma columns to radio-frequency antennas,” Applied Physics Letters 74 (22), 3272–3274 (May 1999).

    Article  ADS  Google Scholar 

  4. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed. (Artech House, Inc., 2000).

  5. Z. H. Qian, R. S. Chen, H. W. Yang et al., “FDTD analysis of a plasma whip antenna,” Microwave and Optical Technology Letters 47 (2), 147–150 (October 2005).

    Article  Google Scholar 

  6. J. J. H. Wang, Generalized Moment Methods in Electromagnetics. (John Wiley & Sons, Inc., New York, 1991).

    Google Scholar 

  7. D. T. Borup and O. P. Gandhi, “Fast-Fourier transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies,” IEEE Transactions on Microwave Theory and Techniques 32 (4), 355–360 (April 1984).

    Article  Google Scholar 

  8. C. C. Su, “Calculation of electromagnetic scattering from a dielectric cylinder using the conjugate gradient method and FFT,” IEEE Transactions on Antennas and Propagation 35 (12), 1418–1425 (December 1987).

    Article  ADS  Google Scholar 

  9. C. C. Su, “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneity and anisotropy,” IEEE Transactions on Antennas and Propagation 37 (3), 384–389 (March 1989).

    Article  MATH  ADS  Google Scholar 

  10. C. C. Su, “The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT,” IEEE Transactions on Antennas and Propagation 41 (3), 510–515 (March 1993).

    ADS  Google Scholar 

  11. P. Zwamborn and P. M. van den Berg, “The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems,” IEEE Transactions on Microwave Theory and Techniques 40 (9), 1757–1766 (September 1992).

    Article  Google Scholar 

  12. M. F. Catedra, E. Gago and L. Nuno, “A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform,” IEEE Transactions on Antennas and Propagation 37 (5), 528–537 (May 1989).

    Article  ADS  Google Scholar 

  13. C. F. Wang and J. M. Jin, “Simple and efficient computation of electromagnetic fields in arbitrarily shaped inhomogeneous dielectric bodies using transpose-free QMR and FFT,” IEEE Transactions on Microwave Theory and Techniques 46 (5), 553–558 (May 1998).

    Article  MathSciNet  Google Scholar 

  14. Z. Q. Zhang and Q. H. Liu, “Three-dimensional weak-form conjugate- and biconjugate-gradient FFT methods for volume integral equations,” Microwave and Optical Technology Letters 29 (5), 350–356 (June 2001).

    Article  Google Scholar 

  15. Z. Q. Zhang, Q. H. Liu and X. M. Xu, “RCS computation of large inhomogeneous objects using a fast integral equation solver,” IEEE Transactions on Antennas and Propagation 51 (3), 613–618 (March 2003).

    Article  ADS  Google Scholar 

  16. R. S. Chen, Z. H. Fan and E. K. N. Yung, “Analysis of electromagnetic scattering of three-dimensional dielectric bodies using Krylov subspace FFT iterative methods,” Microwave and Optical Technology Letters 39 (4), 261–267 (November 2003).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported partially by Natural Science Foundation of China under Contract Number 60271005 and Excellent Youth Natural Science Foundation of China under Contract Number 60325103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Z.H., Chen, R.S., Fan, Z.H. et al. Analysis of Electromagnetic Scattering from Plasma Antenna Using CG-FFT Method. Int J Infrared Milli Waves 29, 486–492 (2008). https://doi.org/10.1007/s10762-008-9339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9339-8

Keywords

Navigation