Skip to main content
Log in

Feasibility Study of Axially- Extracted Virtual Cathode Oscillator

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In this paper, we have analyzed the design parameters of the axially - extracted virtual cathode oscillator, which is high-power microwave source based on the concept of the virtual cathode associated with the intense relativistic electrons beam oscillations in the electrostatic potential well. The microwave emission by the virtual cathode oscillator results from both the space and time oscillations of virtual cathode and reflexing electrons trapped in the potential well between the virtual and real cathodes. In the X-band frequency spectrum 700 MW microwave peak power has been obtained analytically by the solid electron beam of 300 kV and 20 kA for feasible design parameters. The analysis has been performed by 2-dimensional, relativistic, electromagnetic particle-in-cell simulation code XOOPIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. P. Grigor’ev, A. G. Zherlisyn, S. L. Kuznetsov, and G. V. Mel’inkov, Mechanism for the emission of electromagnetic radiation in system with a virtual cathode, Sov. J. Plasma Phys. 14, 118–121, (1988).

    Google Scholar 

  2. D. J. Sullivan, High power microwaves generation from a virtual cathode oscillator (VIRCATOR), IEEE Trans. Nucl. Sci. 30, 3426, (1983).

    ADS  Google Scholar 

  3. T. J. T. Kwan, High-power coherent microwave generation from oscillating virtual cathode, Phys. Fluids 27, 228–232, (1984).

    Article  ADS  Google Scholar 

  4. J. Benford and J. Swegle, High-Power Microwaves (Artech House: Boston, 1992).

    Google Scholar 

  5. V. L. Granatstein and I. Alexeff, High-Power Microwave Sources (Artech House: Boston, 1987).

    Google Scholar 

  6. R. A. Mahaffey, P. Sprangle, J. Golden, and C. A. Kapetanakos, High-power microwaves from nonisochronic reflecting electron system, Phys. Rev. Lett. 39, 843–846, (1977).

    Article  ADS  Google Scholar 

  7. S. C. Burkhart, R. D. Scarpetti, and R. L. Lundberg, A virtual cathode reflex triode for high-power microwave generation, J. Appl. Phys. 58, 28–36, (1985).

    Article  ADS  Google Scholar 

  8. H. Sze, J. Benford, T. Young, D. Bromley, and B. Harteneck, A radially and axially extracted virtual cathode oscillator (vircator), IEEE Trans. Plasma Sci., 13, 492–497, (1985).

    Article  ADS  Google Scholar 

  9. T. J. T. Kwan, Formation of virtual cathodes and microwave generation in relativistic electron beams, Phys. Fluids 27 1570–1572, (1984).

    Article  ADS  Google Scholar 

  10. S. A. Kitsanov, A. I. Klimov, S. D. Korovin, I. K. Kurken, I. V. Pegel, and S. D. Polevin, A vircator with electron beam premodulation based on high current repetitively pulsed accelerator, IEEE Trans. Plasma Sci. 30, 274–284, (2002).

    Article  ADS  Google Scholar 

  11. W. Jiang, K. Masugata, and K. Yatusi, Mechanism of microwave generation by virtual cathode oscillator, Phys. Plasmas 2, 982–986, (1995).

    Article  ADS  Google Scholar 

  12. W. Jiang and M. Kristiansen, Theory of virtual cathode oscillator, Phys. Plasmas 8, 3781–3787, (2001).

    Article  ADS  Google Scholar 

  13. A. E. Dubinov, I. A. Efimova, I. Y. Kormilova, S. K. Saikov, V. D. Selemir, and V. P. Tarakanov, Nonlinear dynamics of electron beams with a virtual cathode, Physics of Particles and Nuclei 35(2), 251–284, (2004).

    Google Scholar 

  14. A. E. Dubinov, I. Ya Komilova, and V. D. Selemir, Collective ion acceleration in systems with virtual cathode, Physics-Uspekhi 45(11), 1109–1129, (2002).

    Article  Google Scholar 

  15. D. Price, D. Fittinghoff, J. Benford, H. Sze, and W. Woo, Operational features and microwave characteristics of the vircator-II experiment, IEEE Trans. Plasma Sci.16, 177–184, (1988).

    Article  ADS  Google Scholar 

  16. H. A. Davis, R. R. Bartsch, L. E. Thode, E. G. Sherwood, and R. M. Stringfield, High-power microwave generation from a virtual cathode device, Phys. Rev. Lett.55, 2293–2296, (1985).

    Article  ADS  Google Scholar 

  17. W. Y. Yong Woo, Two dimensional features of virtual cathode and microwave emission, Phys. Fluids 30, 239–243, (1987).

    Article  ADS  Google Scholar 

  18. J. Benford, D. Price, H. Sze, and D. Bromley, Interaction of vircator microwave generator with an enclosing resonant cavity, J. Appl. Phys. 61, 2098–2100, (1987).

    Article  ADS  Google Scholar 

  19. E.A. Coutsias and D.T. Sullivan, Space-charge limit instabilities in electron beams, Phys. Rev. A 27, 1535–1543, (1983).

    Article  ADS  Google Scholar 

  20. Q. Xing, D. Wang, F. Huang, and J. Deng, Two-dimensional theoretical analysis of the dominant frequency in the inward-emitting coaxial vircator, IEEE Trans. Plasma Sci. 34, 584–589, (2006).

    Article  ADS  Google Scholar 

  21. H. Shao, G. Liu, Z. Yang, C. Chen, Z. Song, and W. Huang, Characteristics of modes in coaxial vircator, IEEE Trans. Plasma Sci. 34, 7–13, (2006).

    Article  ADS  Google Scholar 

  22. J. P. Verboncoeur, A. B. Langdon, and N. J. Gladd, An object-oriented electromagnetic PIC code, Comp. Phys. Commun. 87, 199–211, (1995).

    Article  ADS  Google Scholar 

  23. M. Yasuzuka, K. Nagakawa, Y. Hashimoto, O. Ishihara, and S. Nobuhara, Electron beam behaviour in an axially- extracted virtual cathode oscillator, IEEE Trans. Plasma Sci. 22, 939–944, (1994).

    Article  ADS  Google Scholar 

  24. C. K. Birdsall and W. B. Bridges, Space charge instabilities in electron diodes and plasma converters, J. Appl. Phys. 32, 2611–2618, (1961).

    Article  ADS  Google Scholar 

  25. R. B. Miller, An Introduction to the Physics of Intense Charge Particle Beam (New York: Plenum, 1982).

    Google Scholar 

  26. L. E. Thode, B. B. Goldfrey, and W. R. Shanahn, Vacuum propagation of solid relativistic electron beams, Phys. Fluids 22, 747–763, (1979).

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The authors are sincerely grateful to Professor Dr. T. S. Lamba (Dean Academic and Research) for valuable discussion and suggestions. The authors are also thankful to the reviewer for critical comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, G., Kartikeyan, M.V. Feasibility Study of Axially- Extracted Virtual Cathode Oscillator. Int J Infrared Milli Waves 28, 911–922 (2007). https://doi.org/10.1007/s10762-007-9285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9285-x

Keywords

Navigation