Skip to main content
Log in

Absorption and Transmission Power Coefficients for Millimeter Waves in a Weakly Ionised Vegetation Fire

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A vegetation fire plume is a weakly ionised gaseous medium. Electrons in the plume are mainly due to thermal ionisation of incumbent alkali impurities. The medium is highly collisional with free electron - neutral particle been the dominant particle interaction mechanism. Signal strength of an incident millimetre wave (MM-Wave) may be significantly attenuated in the plume depending on the extent of ionisation. A numerical experiment was set to investigate signal power loss of a MM-Wave incident on a simulated weakly ionised fire plume with flame maximum (seat) temperature ranging from 1000–1150 K. The simulated fire plume had alkali impurities (potassium) content of 1.0% per unit volume. MM-Wave frequency range investigated in the experiment is from 30–60 GHz. The simulation has application in the prediction of MM-Wave propagation in a crown forest fire and may also be applied in remote sensing studies of forest fire environments. Simulated attenuation per unit path length for the MM-Wave frequencies ranged from 0.06–24.00 dBm−1. Phase change per unit path length was simulated to range from 2.97–306.17°m−1 while transmission power coefficients ranged from maximum of 0.9996 for a fire plume at 1000 K to a minimum value of 0.8265 for a plume at a temperature of 1150 K over a plume depth of 1.20 m. Absorption power coefficient ranged from a minimum value of 0.0004 to maximum value of 0.1585 at a seat temperature of 1150 K over the plume depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. W. Butler, J. Cohen, D. J. Latham, R. D. Schuette, P. Sopko, K. S. Shannan, D. Jimenet, and L. S. Bradshaw, Measurements of radiant emission power and temperature in crown fires. Can. J. For. Res. 34, 1577–1587 (2003).

    Article  Google Scholar 

  2. T. Foster, Bushfire: History, Prevention and Control (A. H. and A.W. Reed Pty Ltd, Sydney, 1976).

    Google Scholar 

  3. P. R. Williams, R. A. Congdon, and P. Clarke, Effect of fire regimes on plant abundance in tropical eucalyptus savanna of North-Eastern Australia. Aust. Ecol. 28, 324–338 (2003).

    Google Scholar 

  4. D. W. Williams, J. S. Adams, J. J. Batten, G. F. Whitty, and G. T. Richardson, “Operation Euroka: An Australian Mass Fire Experiment,” Report 386, Defense Standards Laboratory, Maribyrnor, Victoria Australia, 1970.

  5. C. J. Gibbins and R. Chadha, Millimetre-wave propagation through hydrocarbon flame, IEE Proc., H Microw. Antennas Propag. 134, 169–173 (1987).

    Article  Google Scholar 

  6. K. M. Mphale and M. Heron, Plant alkali content and radio wave communication efficiency in high intensity savanna wildfires, J. Atmos. Sol.-Terr. Phys. 69, 471–484 (2007).

    Article  ADS  Google Scholar 

  7. K. Mphale, M. Jacob, and M. Heron, Prediction and measurement of electron density and collision frequency in a weakly ionised pine fire, Int. J. Infrared Millim. Waves 28, 251–262 (2007).

    Article  ADS  Google Scholar 

  8. M. Radojevic, Chemistry of forest fires and regional haze with emphasis on Southeast Asia, Pure Appl. Geophys. 12, 157–187 (2003).

    Article  ADS  Google Scholar 

  9. D. Latham, Space charge generated by wind tunnel fires, Atmos. Res. 51, 267–278 (1999).

    Article  Google Scholar 

  10. C. J. Butler and A. N. Hayhurst, Kinetics of gas-phase ionization of an alkali metal, A, by the electron and proton transfer reactions: A + H3O+ → A +.H20 +H; AOH + AOH2+ H20 in fuel-rich flames at 1800–2250 K, J. Chem. Soc. Faraday Trans. 98, 2729–2734 (1998).

    Article  Google Scholar 

  11. J. Santoru and D. J. Gregorie, Electromagnetic wave absorption in highly collisional plasma, J. Appl. Phys. 74, 3736–3743 (1993).

    Article  ADS  Google Scholar 

  12. K. Akhtar, E. J. Scharer, S. M. Tysk, and E. Kho, Plasma interferometry at high pressures, Rev. Sci. Instrum. 74, 996–1001 (2003).

    Article  ADS  Google Scholar 

  13. S. Zang, X. Hu, Z. Jiang, M. Liu, and Y. He, Propagation of an electromagnetic wave in an atmospheric pressure plasma: Numerical solutions, Phys. Plasmas 13, 013502 (2006).

    Article  ADS  Google Scholar 

  14. J. L. Dupuy and M. Larini, Fire spread through a porous forest fuel bed: A radiative and convective model including fire-induced flow effect, Int. J. Wildland Fire 9, 155–172 (1999).

    Article  Google Scholar 

  15. T. Marcelli, P. A. Santoni, A. Simeoni, E. Leoni, and B. Porterie, Fire spread across pine needle fuel beds: Characterization of temperature and velocity distributions within the plume, Int. J. Wildland Fire 13, 37–48 (2004).

    Article  Google Scholar 

  16. Y. Itikawa, Effective collision frequency of electrons in gases. Phys. Fluids 16, 831–835 (1973).

    Article  ADS  Google Scholar 

  17. T. Okuno, N. Sonoyama, J. Hayashi, C. Li, C. Sathe, and T. Chiba, Primary release of alkali and alkaline earth metallic species during pyrolysis of pulverized biomass, Energy Fuels 19, 2164–2171 (2005).

    Article  Google Scholar 

  18. L. S. Frost, Conductivity of seeded atmospheric pressure plasmas, J. Appl. Phys. 32, 2029–2036 (1961).

    Article  ADS  Google Scholar 

  19. M. Laroussi and J. R. Roth, Numerical calculation of the reflection, absorption and transmission of microwave by a nonuniform plasma slab, IEEE Trans. Plasma Sci. 21, 366–372 (1993).

    Article  ADS  Google Scholar 

  20. D. L. Tang, A. P. Sun, X. M. Qiu, and P. Chu, Interaction of electromagnetic waves with a magnetized nonuniform plasma slab, IEEE Trans. Plasma Sci. 31, 405–410 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like gratefully to acknowledge the Staff Development Office of the University of Botswana. The work was partly supported by Emergency Management Australia under project no. 60/2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kgakgamatso Mphale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mphale, K., Heron, M. Absorption and Transmission Power Coefficients for Millimeter Waves in a Weakly Ionised Vegetation Fire. Int J Infrared Milli Waves 28, 865–879 (2007). https://doi.org/10.1007/s10762-007-9264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9264-2

Keywords

Navigation