Skip to main content
Log in

Influences of the Current Transverse Profile on the Transverse Mode Competition of VCSELs Diodes

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A spatially independent model of vertical-cavity surface-emitting lasers (VCSELs) is derived by integrating the spatially dependent rate equations over the cross section of the cavity of a VCSEL. The angular and radial non-uniformities of the injection current are taken into account. The well-known LP modes of a weakly-guiding cylindrical waveguide are employed to describe the transverse modal structure in the VCSEL cavity. This model is solved in a self-consistent way by using the 4th order Runge-Kutta method. The dependence of transverse mode competition on the current intensity, the angular and radial non-uniformities of the injection current, and the geometrical parameters of the electrical contact are thoroughly investigated and analyzed. The results are useful to the optimum design of the optical transverse modal structure of VCSELs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Iga, F. Koyama, and S. Kinosshita, “Surface Emitting Semi-Conductor Lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988)

    Article  ADS  Google Scholar 

  2. C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse Modes Characteristics Of Vertical Cavity Surface-Emitting Lasers,” Appl. Phys. Lett. 57(3), 218–220 (1990)

    Article  ADS  Google Scholar 

  3. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991)

    Article  ADS  Google Scholar 

  4. C. Degen, I. Fischer, and W. Elsaesser, “Transverse modes in oxide confined VCSELs: Influnce of pump profile, spatial hol burning, and thermal effects,” Optics Express 5(3), 38–47 (1999)

    Article  ADS  Google Scholar 

  5. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997)

    Article  ADS  Google Scholar 

  6. K. D. Choquette, and H. Q. Hou, “Vertical-cavity surface emitting lasers: Moving from research to manufacturing,” Proc. IEEE 85(11), 1730–1739 (1997)

    Article  Google Scholar 

  7. G. C. Wilson, D. M. Kutchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in Vertical-cavity surface-emitting laser diodes,” Appl. Phys., Lett. 64(5), 544–545 (1994)

    Article  ADS  Google Scholar 

  8. J. Y. Law, and G. P. Agrawal, “Effects of spatial hole burning on gain switching in Vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997)

    Article  ADS  Google Scholar 

  9. R. Schatz, “Dynamics of spatial hole burning effects in DFB lasers,” IEEE J. Quantum Electron. 31(11), 1981–1993 (1995)

    Article  ADS  Google Scholar 

  10. W. Nakwaski, “Thermal Aspects of Efficient Operation of Vertical-Cavity Surface-Emitting Lasers,” Optical and Quantum Electronics 28, 335–352 (1996)

    Article  Google Scholar 

  11. Li X. F., Pan W., Luo B., Ma D., and Deng G., “Theoretical analysis of multi-transverse-mode characteristics of vertical-cavity surface-emitting lasers,” Science and Technology 20(6), 505–513 JUN (2005)

    Google Scholar 

  12. Sabugo-Luis J, and Espana-Boquera C, “Multi-transverse mode operation in vertical-cavity surface-emitting lasers: effects of wideband modelling on spectral characteristics and noise,” Optical and Quantum Electronics 38(7), 583–603 MAY (2006)

    Article  Google Scholar 

  13. J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S.-M. Kang, “Spatially independent VCSEL Models for the simulation of diffusive turn-off transients,” Journal of Lightwave Technology 17(1), 95–102 (1999)

    Article  ADS  Google Scholar 

  14. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A comprehensive cuircuit-level model of vertical-cavity surface-emitting lasers,” Journal of Lightwave Technology 17(12), 2612–2632 (1999)

    Article  ADS  Google Scholar 

  15. C. H. Chong, and J. Sarma, “Lasing modes selection in vertical-cavity surface-emitting laser diodes,” IEEE Photonics Technology Letters 5(7), 761–763 (1993)

    Article  ADS  Google Scholar 

  16. Y. G. Zhao, and J. G. McInerney, ‘‘Transverse-Mode Control of Vertical-Cavity Surface-Emitting Lasers,’’ IEEE J. Quantum Electron. 32(11), 1950–1957 (1996)

    Article  ADS  Google Scholar 

  17. J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33(7), 1197–1204 (1997)

    Article  ADS  Google Scholar 

  18. A. Valle, “Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34(10), 1924–1932 (1998)

    Article  ADS  Google Scholar 

  19. H. Zhang, G. Mrozynski, A. Wallrabenstein, and J. Schrage, “Numerical investigation of the effects of the injection currnt on the SHB-effects of VCSELs,” International Journal of Infrared Millimeter Wave 24(8), August (2003)

  20. William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, Numerical Recipes in C, Cambridge University Press, 1988.

  21. S. F. Yu, ‘‘Dynamic behavior of vertical-cavity surface-emitting lasers,’’ IEEE J. Quantum Electron. 32(7), 1168–1179 (1996)

    Article  ADS  Google Scholar 

  22. M. S. Sodha, and A. K. Ghatak, Inhomogeneous Optical Waveguides, (Plenum, New York, 1977), pp. 61–71

    Google Scholar 

  23. A. W. Snyder, and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, London, U. K., 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Zhang.

Appendix

Appendix

$$ d^{{s,c}}_{{ij}} = D_{n} {\left( {\frac{{\sigma _{i} }} {{r_{{cl}} }}} \right)}^{2} ,gnt^{{s,c}}_{{mn}} = 1,b_{0} = 1 $$
(A1)
$$ \begin{aligned} \xi ^{{s,c}}_{{ij}} = \frac{2} {{\pi r^{2}_{{cl}} J^{2}_{0} {\left( {\sigma _{i} } \right)}{\left( {1 + \delta _{{j0}} } \right)}}}{\int\limits_0^{2\pi } {{\int\limits_0^{r_{{cl}} } {J_{0} {\left( {\frac{{\sigma _{i} r}} {{r_{{cl}} }}} \right)} \cdot {\left( {\begin{array}{*{20}c} {{\sin {\left( {j\varphi } \right)}}} \\ {{\cos {\left( {j\varphi } \right)}}} \\ \end{array} } \right)}} }} } \\ \cdot j_{r} {\left( r \right)} \cdot j_{\varphi } {\left( \varphi \right)}rdrd\varphi \\ \end{aligned} $$
(A2)
$$ a^{{s,c}}_{{ii_{1} }} = \frac{{2D_{n} }} {{r^{2}_{{cl}} J^{2}_{0} {\left( {\sigma _{i} } \right)}}}{\int\limits_\delta ^{r_{{cl}} } {\frac{1} {r}J_{0} {\left( {\frac{{\sigma _{i} r}} {{r_{{cl}} }}} \right)}J_{0} {\left( {\frac{{\sigma _{{i_{1} }} r}} {{r_{{cl}} }}} \right)}} }dr $$
(A3)
$$ \begin{aligned} oss^{{s,c}}_{{ijmni_{1} j_{1} }} = \frac{2} {{\pi r^{2}_{{cl}} J^{2}_{0} {\left( {\sigma _{i} } \right)}}}{\int\limits_0^{2\pi } {{\int\limits_0^{r_{{cl}} } {J_{0} {\left( {\frac{{\sigma _{i} r}} {{r_{{cl}} }}} \right)}J_{0} {\left( {\frac{{\sigma _{{i_{1} }} r}} {{r_{{cl}} }}} \right)}} }} } \\ \cdot \sin {\left( {j\varphi } \right)}\sin {\left( {j_{1} \varphi } \right)} \cdot \psi ^{{s,c}}_{{mn}} {\left( {r,\varphi } \right)}rdrd\varphi \\ \end{aligned} $$
(A4)
$$ \begin{aligned} oss^{{s,c}}_{{ijmni_{1} j_{1} }} = \frac{2}{{\pi r^{2}_{{cl}} J^{2}_{0} {\left( {\sigma _{i} } \right)}(1 + \delta j0)}}{\int\limits_0^{2\pi } {{\int\limits_0^{r_{{cl}} } {J_{0} {\left( {\frac{{\sigma _{i} r}}{{r_{{cl}} }}} \right)}J_{0} {\left( {\frac{{\sigma _{{i_{1} }} r}}{{r_{{cl}} }}} \right)}} }} } \\ \cdot \cos {\left( {j\varphi } \right)}\cos {\left( {j_{1} \varphi } \right)} \cdot \psi ^{{s,c}}_{{mn}} {\left( {r,\varphi } \right)}rdrd\varphi \\ \end{aligned} $$
(A5)
$$ gnc^{{s,c}}_{{ijmn}} = \frac{1} {{\pi r^{2}_{{cl}} }}{\int\limits_0^{2\pi } {{\int\limits_0^{r_{{cl}} } {J_{0} {\left( {\frac{{\sigma _{i} r}} {{r_{{cl}} }}} \right)}\cos {\left( {j\varphi } \right)}\psi ^{{s,c}}_{{mn}} {\left( {r,\varphi } \right)}rdrd\varphi } }} } $$
(A6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H. Influences of the Current Transverse Profile on the Transverse Mode Competition of VCSELs Diodes. Int J Infrared Milli Waves 28, 713–723 (2007). https://doi.org/10.1007/s10762-007-9257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9257-1

Keywords

Navigation