Skip to main content
Log in

The Use of the FDTD Method for Electromagnetic Analysis in the Presence of Indepedently Time-Varying Media

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The suitability of the finite-difference time-domain (FDTD) method for electromagnetic modelling in the presence of independently-time-varying materials is investigated. Two examples are given and results compared to those obtained using other theoretical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. T. Landsberg, Seeking Ultimates : An Intuitive Guide to Physics (Institute of Physics Publishing, 2001).

  2. F. de Flaviis, N. G. Alexopoulos, and O. M. Stafsudd, Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Trans. Microwave Theor. Tech. MTT-45(6), 963–969 (1997), June.

    Article  Google Scholar 

  3. J. D. Arnold, R. Gary, and A. Vilcot, 3D photo-induced load modeling for optically controlled microwave microstrip line. Microw. Opt. Technol. Lett. 40(5), 356–359 (2004), March.

    Article  Google Scholar 

  4. R. E. Horn, H. Jacobs, E. Freibergs, and K. L. Kohn, Electronic modulated beam-steerable silicon waveguide array antenna. IEEE Trans. Microwave Theor. Tech. MTT-28(6), 647–653 (1980), June.

    Article  ADS  Google Scholar 

  5. V. K. Varadan, V. V. Varadan, K. A. Jose, and J. F. Kelly, Electronically steerable leaky wave antenna using a tunable ferroelectric material. Smart Mater. Struc. 3, 470–475 (1994).

    Article  ADS  Google Scholar 

  6. V. K. Varadan, K. A. Jose, and V. V. Varadan, Design and development of electronically tunable microstrip antennas. Smart Mater. Struc. 8, 238–242 (1999).

    Article  ADS  Google Scholar 

  7. K. S. Yee, Numercial solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat. 14, 302–307 (1966), Sept.

    Article  ADS  Google Scholar 

  8. A. Taflove, and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, 2nd Ed.(Artech House Inc., 2000).

  9. F. R. Morgenthaler, Velocity Modulation of Electromagnetic Waves. IRE Trans. Microwave Theor. Tech. 6, 167–172 (1958), Apr.

    Article  Google Scholar 

  10. L. Felsen, and G. M. Whitman, Wave propagation in time-varying media. IEEE Trans. Antennas Propag. 18, 242–253 (1970), (March).

    Article  ADS  Google Scholar 

  11. R. L. Fante, Transmission of Electromagnetic Waves into Time-Varying Media. IEEE Trans. Antennas Propag. 19, 417–424 (1971), May.

    Article  ADS  Google Scholar 

  12. C. Jiang, Wave propagation and dipole radiation in a suddenly created plasma. IEEE Trans. Antennas Propag. 23(1), 83–90 (1975), Jan.

    Article  ADS  Google Scholar 

  13. J. C. Simon, Action of a progressive disturbance on a guided electromagnetic wave. IRE Trans. Microwave Theor. Tech. 8, 18–29 (1960), Jan.

    Article  Google Scholar 

  14. E. S. Cassedy, and A. A. Oliner, Dispersion relations in time-space periodic media : Part I – Stable interactions. Proc. IEEE. 51, 1342–1359 (1963), Oct.

    Article  Google Scholar 

  15. A. Hessel, and A. A. Oliner, Wave propagation in a medium with a progessive sinusoidal disturbance. IRE Trans. Microwave Theor Tech. 6, 337–343, (1961), July.

    MathSciNet  Google Scholar 

  16. D. E. Holberg, and K. S. Kunz, Parametric Properties of Fields in a Slab of Time- Varying Permittivity. IEEE Trans. Antennas Propag. 14, 183–194 (1966) March.

    Article  ADS  Google Scholar 

  17. T. Ruiz, L. Wright, and J. Smith. Characteristics of Electromagnetic Waves Propagating in Time Varying Media. IEEE Trans. Antennas Propag. 26, 358–361 (1978), Mar.

    Article  ADS  Google Scholar 

  18. C. Elachi, Dipole antenna in space-time periodic media. IEEE Trans. Antennas Propag. 20, 280–287 (1972), May.

    Article  ADS  Google Scholar 

  19. A. G. Nerukh, I. V. Scherbatko, and D. A. Nerukh, Using evolutionary recursion to solve an electromagnetic problem with time-varying parameters. Microw. Opt. Technol. Lett. 14(1) 3136 (1997), Jan.

    Article  Google Scholar 

  20. A. G. Nerukh, I. V. Scherbatko, and M. Marciniak, The possible mechanism for a frequency shift by a time-varying of medium features. J. Telecommun. Inf. Technol. 1, 46–51 (2000).

    Google Scholar 

  21. D. K. Kalluri, Effect of switching a magnetoplasma medium on a travelling wave : Longitudinal propagation. IEEE Trans. Antennas Propag., 37(12) 1638–1642 (1989), Dec.

    Article  ADS  Google Scholar 

  22. G. D. Taylor, D. H. Lam, and T. H. Shumpert, Electromagnetic Pulse Scattering in Time-Varying Inhomogeneous Media. IEEE Trans. Antennas Propag. 17, 585–589 1969, Sept.

    Article  ADS  Google Scholar 

  23. F. A. Harfoush, and A. Taflove, Scattering of electromagnetic waves by a material half-space with a time-varying conductivity. IEEE Trans. Antennas Propag. 39(7), 898–906 (1991), July.

    Article  ADS  Google Scholar 

  24. J. H. Lee, D. K. Kalluri, and G. C. Nigg, FDTD simulation of electromagnetic transformation in a dynamic magnetised plasma. Int. J. Infrared Millim. Waves 21, 1223–1253 (2000), August.

    Article  Google Scholar 

  25. D. K. Kalluri, J. H. Lee, and M. M. Ehsan, FDTD simulation of electromagnetic pulse interaction with a switched plasma slab. Int. J. Infrared Millim. Waves, 24, 349–365 (2003), March.

    Article  Google Scholar 

  26. D. M. Sillivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, 2000).

  27. A. Esposito, and L. Tarricone, Grid Computing for Electromagnetics (Artech House, 2004).

  28. W. Sui, Time-Domain Computer Analysis of Non-Linear Hybrid Systems (CRC Press, 2001).

  29. A. Zhao, and V. Raisanen, Application of a simple and efficient source excitation technique to the FDTD analysis of wave guide and microstrip circuits. IEEE Trans. Microwave Theor. Tech. 44, 1535–1539 (1996), Sept.

    Article  Google Scholar 

  30. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal – Part 2: Algorithms and applications. Proc. IEEE 80(4) 540–568 (1992), April.

    Article  ADS  Google Scholar 

  31. The MATLAB package of The MathWorks, Inc., USA.

  32. M. R. Zunoubi, K. C. Donepudi, J. Jin, and W. C. Chew, Efficient time-domain and frequency-domain finite-element solution of Maxwell’s equations using spectral Lanczos decomposition method. IEEE Trans. Microwave Theor. Tech. 46(8), 1141–1149 (1998), Aug.

    Article  Google Scholar 

  33. Y. Qian, and T. Itoh, FDTD Analysis and Design of Microwave Circuits and Antennas (Realize Inc.,1999).

  34. K. S. Yee, D. Ingham, and K. Shager, Time domain extrapolation to the far fields based on FDTD calculations. IEEE Trans. Microwave Theor. Tech. MTT-39, 410–413 (1991), Mar.

    Google Scholar 

  35. R. J. Luebbers, K. S. Kunz, M. Schneider and F. Hunsberger, A finite-difference time-domain near zone to far zone transformation. IEEE Trans. Antennas Propag. 39(4), 429–435 (1991), April.

    Article  ADS  Google Scholar 

  36. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

  37. IE3D User’s Manual”, Zeland Software Inc., 48834 Kato Road - Suite 103A, Fremont, CA 94538, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek A. McNamara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., McNamara, D.A. The Use of the FDTD Method for Electromagnetic Analysis in the Presence of Indepedently Time-Varying Media. Int J Infrared Milli Waves 28, 759–778 (2007). https://doi.org/10.1007/s10762-007-9251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9251-7

Keywords

Navigation