Skip to main content
Log in

Mode Converter Synthesis by the Particle Swarm Optimization

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Particle Swarm Optimization (PSO) is an effective, simple and promising method intended for the fast search in multi-dimensional space [Kennedy and Eberhart, "Particle Swarm Optimization", Proc. of the 1995 IEEE International Conference on Neural Networks, 1995]. Besides special testing problems a number of engineering tasks of electrodynamics were solved by the PSO successfully [Robinson and Rahmat-Samii, "Particle Swarm Optimization in Electromagnetics", IEEE Trans. Antennas Propag., 2004; Jin and Rahmat-Samii, "Parallel Particle Swarm Optimization and Finite-Difference Time-Domain (PSO/FDTD) Algorithm for Multband and Wide-Band Patch Antenna Designs", IEEE Trans. Antennas Propag., 2005]. On the other hand, the scattering matrix technique is a fast and accurate method of mode converter analysis. We illustrate PSO by a number of converter designs developed for high-power microwaves control: a matching horn for output maser section, a corrugated converter of linear-polarized hybrid modes, a TE01 mitre bend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Kennedy, and R. Eberhart, Particle Swarm Optimization. Proc. of the 1995 IEEE International Conference on Neural Networks. (IEEE Press, 1995), pp. 1942–1948.

  2. J. Robinson, and Y. Rahmat-Samii, Particle Swarm Optimization in Electromagnetics. IEEE Trans. Antennas Propag. 52(2), 397–407 (2004), Feb.

    Article  MathSciNet  Google Scholar 

  3. N. Jin, and Y. Rahmat-Samii, Parallel Particle Swarm Optimization and Finite-Difference Time-Domain (PSO/FDTD) Algorithm for Multband and Wide-Band Patch Antenna Designs. IEEE Trans. Antennas Propag. 53(11), 3459–3468 (2005), Nov.

    Article  Google Scholar 

  4. M. Clerk, and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).

    Article  Google Scholar 

  5. R. C. Eberhart, and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings on IEEE Congress on Evolutionary Computation 2000. (San Diego CA, 2000), pp. 84–88.

  6. A. Carlisle, and G. Dozier, An Off-The-Shelf PSO. Proc. of the 2001 Workshop on Particle Swarm Optimization. (Indianapolis, IN, 2001), pp. 1–6.

  7. J. M. Nelson, P. E. Latham, M. Caplan and W. G. Lawson, Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation. IEEE Trans. Microwave Theor. Tech. 37(8) 1165–1169 (1989).

    Article  Google Scholar 

  8. C. Granet, G. L. James, R. Bolton, and G. Moorey, A Smooth-Walled Spline-Profile Horn as an Alternative to the Corrugated Horn for Wide Band Millimeter Wave Applications. IEEE Trans. Antennas Propag. 52, 848–854 (2004).

    Article  Google Scholar 

  9. A. V. Chirkov, G. G. Denisov, and N. L. Alexandrov, 3D Wavebeam field reconstruction from intensity measurements in a few cross-sections. Opt. Commun. 115(5) 449–452 (1995), Apr.

    Article  ADS  Google Scholar 

  10. V. L. Belousov, A. A. Bogdashov, G. G. Denisov, A. V. Chirkov, and S. V. Kuzikov, New Components for TE01 Transmission Lines. Proc. Int. Workshop Strong Microwaves in Plasmas, Nizhny Novgorod, vol.2, pp. 948–953 (1999), August 2–9.

    Google Scholar 

  11. A. Bogdashov, G. Denisov, D. Lukovnikov, Y. Rodin, and J. Hirshfild, Ka-Band Resonant Ring for Testing Components for a High-Gradient Linear Accelerator. IEEE Trans. Microwave Theor. Tech. 53(10), 3152–3154 (2005), October.

    Article  Google Scholar 

  12. E. A. Marcatili, Waveguide Elbow / US Patent 3.090.931.C1.333-98; Filed Mar.8, 1962.

  13. R. B. Vaganov, and V. U. Z. Izvestiya, Radiofizika 12 630–635 (1969).

    Google Scholar 

  14. J. L. Hirshfield, O. A. Nezhevenko, M. A. Lapoiter, and V. P. Yakovlev, Technology Developments for a Future Millimeter-Wave High-Gradient Linear Accelerator. 2004 Joint Int. Conf. on Infrared and MM Waves, Conference Digest, 529–530.

Download references

Acknowledgements

Authors would like to thank Prof. M.I. Petelin, Dr. N.Yu. Peskov and S.Yu. Kornishin, A.V. Chirkov for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr A. Bogdashov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdashov, A.A., Rodin, Y.V. Mode Converter Synthesis by the Particle Swarm Optimization. Int J Infrared Milli Waves 28, 627–638 (2007). https://doi.org/10.1007/s10762-007-9248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9248-2

Keywords

Navigation