Skip to main content
Log in

LARGE-SIGNAL SIMULATIONS OF A GYROTRON TRAVELING-WAVE AMPLIFIER WITH A MODE-SELECTIVE INTERACTION CIRCUIT

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A self-consistent nonlinear theory is used to analyze the saturated performances of a Ka-band gyrotron traveling wave amplifier (gyro-TWA) operating at the fundamental with a mode-selective interaction circuit involving a tapered vane-slot mode converter. The amplifier is predicted to generate 140 kW saturated output power with 33.3% efficiency, a saturated gain of 33dB, and a 3dB bandwidth of 2.7 GHz (8%) for a 70 kV, 6A electron beam with a velocity ratio of 1.0 and an axial velocity spread of 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Felch, B.G. Danly, and H.R. Jory, et al., “Characteristics and applications of fast-wave gyrodevices”, Proceedings of the IEEE, vol. 87, no. 5, pp. 752–781, 1999.

    Article  Google Scholar 

  2. K.R. Chu, “The electron cyclotron maser”, Rev. Mod. Phys., vol. 76, no. 2, pp.489–540, 2004.

    Article  ADS  Google Scholar 

  3. V. L. Granatstein, B. Levush, and B. G. Danly, et al., “A quarter century of gyrotron research and development”, IEEE Trans. Plasma Sci., vol. 25, no. 6, pp.1322–1334, 1997.

    Article  Google Scholar 

  4. K.R. Chu, L.R. Barnett, and H.Y. Chen, et al., “Stabilization of absolute instabilities in the gyrotron traveling wave amplifier”, Phys. Rev. Lett, vol. 74, no. 3, pp. 1103–1106, 1995.

    Article  ADS  Google Scholar 

  5. Q.S. Wang, D.B. McDermott, and N.C. Luhmann, Jr., “Demonstration of Marginal stability theory by a 200-kW second harmonic gyro-TWT amplifier”, Phys. Rev. Lett, vol. 75, no. 23, pp. 4322–4325, 1995.

    Article  ADS  Google Scholar 

  6. Chu K R, Chen H Y, and Hung C L, et al., “Theory and experimental of ultrahigh-gain gyrotron traveling wave amplifier”, IEEE Trans. Plasma Sci., vol. 27, no. 4, pp. 391–404, 1999.

    Google Scholar 

  7. Morag Carven, J.P. Calame, and B.G. Danly, et al., “A gyrotron traveling wave tube amplifier experiment with a ceramic loaded interaction circuit”, IEEE Trans. Plasma Sci., vol. 30, no. 3, pp. 885–893, 2002.

    Article  Google Scholar 

  8. Q.S. Wang, D.B. McDermott, and N.C. Luhmann, Jr., “Operation of a stable 200kW second-harmonic gyro-TWT amplifier”, IEEE Trans. Plasma Sci., vol. 24, no. 3, pp. 700–706, 1996.

    Article  Google Scholar 

  9. Q.S. Wang, H.E. Huey, and D.B. McDermott, et al., “Design of a W-band second-harmonic gyro-TWT amplifier”, IEEE Trans. Plasma Sci., vol. 28, no. 6, pp. 2232–2237, 2000.

    Article  Google Scholar 

  10. Jirun Luo, W. Guo, M. Zhu, “Numerical simulation and analysis of a new type of complex cavity for cyrotron applications”, Int. J. Infrared Millimeter Waves, vol. 26, no. 12, pp. 1703–1711, 2005.

    Article  Google Scholar 

  11. M. Zhu, J.R. Luo, and W. Guo et al., “An extended interaction cavity for third harmonic-multiplying phigtron”. Sixth International Vacuum Electronics Conference (IVEC 2005), pp.297–299, Huis ter Duin, Noordwijk, The Netherlands, April. 20–22, 2005.

    Google Scholar 

  12. J.R. Luo, H. Guo, and Y. Su, et al., “Experimental study of an input coupler for Ka band harmonic multiplying gyro-amplifiers”, Asia-Pacific Microwave Conference Proceedings (APMC), vol. 2, pp.870–873, 2001.

    Google Scholar 

  13. J.P. Tate, H. Guo, and M. Naiman, et al., “Experimental proof-of-principle results on a mode-selective input coupler for gyrotron applications”, IEEE Trans. Microwave Theory Tech., vol. 42, no. 4, pp. 1910–1917, 1994.

    Article  Google Scholar 

  14. H. Guo, D.S. Wu, and G. Liu, et al., “Special complex open-cavity and low-magnetic-field high-power gyrotron”, IEEE Trans. Plasma Sci., vol. 18, no. 3, pp. 48–55, 1990.

    Article  Google Scholar 

  15. J. Rodgers, H. Guo, and V.L. Granaatstein, et al., “High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator”, IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 412–421, 1999.

    Article  Google Scholar 

  16. J. Rodgers, H. Guo, and G.S. Nusinovich, et al., “Experimental study of phase deviation and pushing in a frequency doubling, second harmonic gyro-amplifier”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2434–2441, 2001.

    Article  Google Scholar 

  17. W. Chen, “A first study of a harmonic doubling gyro-TWT”, Ph.D. dissertation, Institute for Plasma Research, Dept. of Electrical and Computer Engineering, Univ. of Maryland at college park, 2000.

  18. H. Guo, S. H. Chen, V. L. Granatstein, et al., “Operation of a high performance, harmonic-multiplying, inverted gyrotwystron”, IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 451–460, 1998.

    Article  Google Scholar 

  19. J. Zhao, H. Guo, G. S. Nusinovich, et al., “Studies of a three-stage inverted gyrotwystron,” IEEE Trans. Plasma Sci., vol. 28, no. 3, pp. 657–664, 2000.

    Article  Google Scholar 

  20. Q.S. Wang, C.S. Kou, and D.B. McDermott, et al., “High-power harmonic gyro-TWAT’s—part II: nonlinear theory and design”, IEEE Trans. Plasma Sci., vol. 20, no. 3, pp.163–169, 1992.

    Article  Google Scholar 

  21. Y. Y. Lau, K. R. Chu, L. Barnett, and V. L. Granatstein, “Gyrotron traveling wave amplifier: II. Effects of velocity spread and wall resistivity”, Int. J. Infrared Millimeter Waves, vol. 2, no. 3, pp. 395–412, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongqing Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, C., Luo, J. LARGE-SIGNAL SIMULATIONS OF A GYROTRON TRAVELING-WAVE AMPLIFIER WITH A MODE-SELECTIVE INTERACTION CIRCUIT. Int J Infrared Milli Waves 27, 1427–1432 (2006). https://doi.org/10.1007/s10762-006-9147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9147-y

Keywords

Navigation