Skip to main content
Log in

Geometrical Effects on the Performance of Coaxial-Waveguide Gyrotron Traveling-Wave Amplifiers

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

This theoretical investigation examines the feasibility of improving the stability of the coaxial-waveguide gyrotron traveling-wave tube (gyro-TWT) by selecting the geometrical parameter C, i.e., the ratio of the outer radius to the inner radius. The effects of the geometrical parameter C on the start-oscillation currents of oscillation modes are analyzed to determine the optimum operating conditions. Simulation results indicate that the coaxial gyro-TWT with distributed wall losses can be stably operated at a higher beam current by optimizing C. Additionally, the saturated behaviors of the operating TE01 mode are evaluated for several C values to investigate the geometrical effects on the amplification of the coaxial gyro-TWT. Moreover, performance of the fundamental harmonic coaxial gyro-TWT achieved with the optimized C value is predicted under stable operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read, IEEE J. Quantum Electron. 15, 848 (1979).

    Article  ADS  Google Scholar 

  2. Y. Y. Lau, K. R. Chu, L. R. Barnett, and V. L. Granatstein, Int. J. Infrared Millim. Waves 2, 373 (1981).

    Article  ADS  Google Scholar 

  3. L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C. C. Tu, Phys. Rev. Lett. 63, 1062 (1989).

    Article  ADS  Google Scholar 

  4. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen et al., Phys. Rev. Lett. 81, 4760 (1998).

    Article  ADS  Google Scholar 

  5. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen et al., IEEE Trans. Plasma Sci. 27, 391 (1999).

    Article  Google Scholar 

  6. J. P. Calame, M. Garven, B. G. Danly, B. Levush, and K. T. Nguyen, IEEE Trans. Electron Devices 49, 1469 (2002).

    Article  Google Scholar 

  7. M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood et al., IEEE Trans. Plasma Sci. 30, 885 (2002).

    Article  Google Scholar 

  8. H. H. Song, D. B. McDermott, Y. Hirarta, L. R. Barnett, C. W. Domier, H. L. Hsu et al., Phys. Plasmas 11, 2935 (2004).

    Article  ADS  Google Scholar 

  9. K. T. Nguyen, J. P. Calame, D. E. Pershing, B. G. Danly, M. Garven, B. Levush et al., IEEE Trans. Electron Devices 48, 108 (2001).

    Article  Google Scholar 

  10. D. E. Pershing, K. T. Nguyen, J. P. Calame, B. G. Danly, B. Levush, F. N. Wood et al., IEEE Trans. Plasma Sci. 32, 947 (2004).

    Article  Google Scholar 

  11. W. C. Tsai, T. H. Chang, N. C. Chen, K. R. Chu, H. H. Song, and N. C. Luhman, Jr., Phys. Rev. E 70, 1 (2004).

    Google Scholar 

  12. Y. S. Yeh, C. L. Hung, C. W. Su, T. S. Wu, Y. Y. Shin, and Y. T. Lo, Int. J. Infrared Millim. Waves 25, 29 (2004).

    Article  Google Scholar 

  13. Y. S. Yeh, Y. Y. Shin, Y. C. You, and L. K. Chen, Phys. Plasmas 12, 43108 (2005).

    Article  Google Scholar 

  14. G. S. Nusinovich, M. E. Read, O. Dumbrajs, and K. E. Kreischer, IEEE Trans. Electron Devices 41, 433 (1994).

    Article  Google Scholar 

  15. J. J. Barroso, P. J. Castro, and R. A. Correa, IEEE Trans. Microwave Theory Tech. 43, 1384 (1995).

    Article  Google Scholar 

  16. B. Piosczyk, A. Arnold, G. Dammertz, O. Dumbrajs, M. Kuntze, and M. K. Thumm, IEEE Trans. Plasmas Sci. 30, 819 (2002).

    Article  Google Scholar 

  17. O. Dumbrajs and G. S. Nusinovich, IEEE Trans. Plasmas Sci. 32, 934 (2004).

    Article  Google Scholar 

  18. M. V. Kartikeyan, C. T. Iatrou, and M. Thumm, IEEE Trans. Plasmas Sci. 29, 57 (2001).

    Article  Google Scholar 

  19. W. Yang and W. Ding, Int. J. Infrared Millim. Waves 24, 1539 (2003).

    Article  Google Scholar 

  20. S.-C. Zhang, Z.-B. Ouyang, C.-R. Qiu, H.-B. Zhang, and J.-B. Jin, IEEE Trans. Plasmas Sci. 32, 981 (2004).

    Article  Google Scholar 

  21. C. L. Hung and Y. S. Yeh, Phys. Plasmas 12, 103102 (2005).

    Google Scholar 

  22. C. L. Hung and Y. S. Yeh, Int. J. Infrared Millim. Waves 24, 2025 (2003).

    Article  Google Scholar 

  23. C. L. Hung and Y. S. Yeh, Int. J. Infrared Millim. Waves 26, 29 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Lun Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CL. Geometrical Effects on the Performance of Coaxial-Waveguide Gyrotron Traveling-Wave Amplifiers. Int J Infrared Milli Waves 27, 913–921 (2006). https://doi.org/10.1007/s10762-006-9048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9048-0

Keywords

Navigation