Skip to main content
Log in

The Infrared Ray Transport in an N-Layered Matched Skin

  • Original Article
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Infrared ray (IR) has great potential in medical diagnosis and therapy. In order to detect tumor in skin, we set up the steady-state and time domain IR diffusion model of an n-layered matched medium with an infinitely thick. We utilize the diffuse equation to solve a five-layered infinite matched medium and obtain the accurate solution of a matched medium of the steady state and time domain in tissue. We compare the steady-state spatially resolved reflectance calculated with Monte-Carlo simulations. The Monte-Carlo simulation shows that the solution is valid. Our equation can be used to obtain the tumor information in medical diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy”, Phys. Mod. Biol. 46, 2227–2237 (2001).

    Article  Google Scholar 

  • 2. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with 3D segmentation from magnetic resonance imaging”, Appl. Opt. 42, 3095–3108(2003).

    PubMed  Google Scholar 

  • 3. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” Journal of the Optical Society of America A 19, 1983–1993 (2002).

    Google Scholar 

  • 4. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer”, Appl. Opt. 42, 2906–2914 (2003).

    PubMed  Google Scholar 

  • 5. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14, 246–264(1997).

    Google Scholar 

  • 6. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for non-invasive determination of the Optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314(1996).

    Google Scholar 

  • 7. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to source,” Phys. Med. Biol. 42,1801–1819(1997)

    Article  PubMed  Google Scholar 

  • 8. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, ‘“Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain,” Appl. Opt. 39, 2235–2244 (2000).

    Google Scholar 

  • 9. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).

    Google Scholar 

  • 10. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-Domain Optical Mammography: Initial Clinical Results on Detection and Characterization of Breast Tumors”, Appl. Opt. 42, 3170–3186 (2003).

    PubMed  Google Scholar 

  • 11. A. Kienle, T. Glanzmann, G. Wagnieres, and H. van den Bergh, investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37 (28), 6852—6862(1998).

    Google Scholar 

  • 12. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37 (4), 779–791 (1998).

    Google Scholar 

  • 13. R. C. Haskell, L.O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdama, and B. J. Tromberg, “Boundary conditions for the diffuse equation in radiative transfer,” J. Opt. SOC. Am. A11 2727–2741(1994).

    Google Scholar 

  • 14. J.Ripoll and M. Nieto-Vesperinas, “Index mismatch for diffuse photon density waves at both flat and rough diffuse-difuse interfaces”, J. Opt. SOC. Am. A16 1947–1957(1999)

    Google Scholar 

  • 15. L. Wang, S. L. Jacques, and L. Zheng, “MCML Monte Carlo modeling of light transport in multi-layered tissue,” comput. Methods Programs Biomed. 47,131–146 (1995)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., hua, Z. & Gong, Y. The Infrared Ray Transport in an N-Layered Matched Skin. Int J Infrared Milli Waves 26, 1195–1205 (2005). https://doi.org/10.1007/s10762-005-7277-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-7277-2

Key words:

Navigation