Advertisement

Human Diet and Residential Mobility in the Central Western Argentina Colony: Stable Isotopes (13C, 15N, 18O) Trends in Archaeological Bone Samples

  • Horacio ChiavazzaEmail author
  • Daniela Mansegosa
  • Adolfo Gil
Article

Abstract

Change or continuity of the human diet after the Spanish settlement in America is a topic mostly addressed in historical written documents with little use of the archaeological record and bioarchaeological or culture material. To counteract this weakness, this paper presents a study of the diet in individuals living in central-western Argentina between the seventeenth, eighteenth, and nineteenth centuries. The paper, focusing on historical bioarchaeology using stable isotopes (δ13C, δ15N, δ18O) from bone samples of human skeletal remains found in Mendoza, Argentina. The aim is to reconstruct the human diet and its residential mobility. Our results show little inclusion of maize in these populations’ diets, significantly less than those for the same region during pre-Hispanic times. The data do not indicate a historic continuity in dietary practices between pre-Hispanic and post Hispanic human population.

Keywords

Colony Central Western Argentina Stable isotopes Human diet Residential mobility 

Notes

Acknowledgments

We wish to thank the Centro de Investigaciones Ruinas de San Francisco Team (Area Fundacional, Municipalidad de Mendoza), SECTyP (UNCuyo, Mendoza), Museo de Historia Natural de San Rafael, and CONICET. We also thank Luciano Valenzuela for his comments on a preliminary version. Two reviewers noted significant problems and they made comments and observation that we considered in a new version. We appreciate the help of Andy Froehle and his willingness to discuss the interpretation of the multivariate model in our study case. We also thank Cristina Ducos for the translation of the Spanish version into English, Fernando Franchetti and Mariana Gimenez for reviewing the text, and Miguel Giardina for making some of the figures for this paper.

References

  1. Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17: 431–451.CrossRefGoogle Scholar
  2. Ambrose, S. (1993). Isotopic analysis of paleodiets: methodological and interpretive considerations. In Sandford, M. (ed.), Investigations of Ancient Human Tissue, Gordon and Breach Science, New York, pp. 59–129.Google Scholar
  3. Ambrose, S., and De Niro, M. (1986). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature 319: 321–324.CrossRefGoogle Scholar
  4. Ambrose, S., and Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Lambert, J., and Grupe, G. (eds.), Prehistoric Human Bone: Archaeology at the Molecular Level, Springer, New York, pp. 1–37.CrossRefGoogle Scholar
  5. Bárcena, R. (2001). Prehistoria del Centro Oeste Argentino. In Berberián, E., and Nielsen, A. (eds.), Historia Argentina Prehispánica, vol. 2, Ediciones Brujas, Córdoba, pp. 561–634.Google Scholar
  6. Bárcena, R. (2009). La Iglesia y Convento de Santo Domingo Soriano del Área Fundacional de Mendoza: Investigaciones Arqueológicas e Históricas en la Antigua Manzana de los Dominicos. In Targa, J. G. (ed.), Arqueología Colonial Latinoamericana: Modelos de Estudio, Archaeopress, Oxford, British Archaeological Reports, pp. 269–293.Google Scholar
  7. Bender, M. (1968). Mass spectrometric studies of carbon-13 variations in corn and other grasses. Radiocarbon 10: 468–477.Google Scholar
  8. Buzon, M. R., Conlee, C. A., and Bowen, G. J. (2011). Refining oxygen isotope analysis in the Nasca region of Peru: an investigation of water sources and archaeological samples. International Journal of Osteoarchaeology 21: 446–455.CrossRefGoogle Scholar
  9. Chiavazza, H. (1999). Por las arenas bailan los remolinos: arqueología en los cauces del río Mendoza. Acta de Resúmenes del XIII° Congreso Nacional de Arqueología Argentina. Universidade Nacional de Córdoba, Córdoba, pp. 320–322.Google Scholar
  10. Chiavazza, H. (2001). Las Antiguas Poblaciones de las Arenas. Arqueología en las Tierras Áridas del Noreste Mendocino, Ediciones Culturales, Mendoza.Google Scholar
  11. Chiavazza, H. (2005). Los templos coloniales como estructuras funerarias. Arqueología en la iglesia jesuita de Mendoza, British Archaeological Reports, Oxford.Google Scholar
  12. Chiavazza, H. (2008). Bases teóricas para el análisis arqueológico de la espacialidad religiosa y los procesos de transformación cultural en la ciudad de Mendoza durante la colonia. Revista de Arqueología Americana 25: 225–244.Google Scholar
  13. Chiavazza, H. (2010). Ocupaciones en antiguos ambientes de humedal de las tierras bajas del norte de Mendoza: sitio Tulumaya (PA70). Intersecciones en Antropología 11: 41–57.Google Scholar
  14. Chiavazza, H. (2013). “No tan simples”: pesca y horticultura entre grupos originarios del norte de Mendoza. Comechingonia Virtual 7: 27–45.Google Scholar
  15. Chiavazza H. and Cortegoso V. (2001). 2001. Arqueología urbana en Mendoza: arqueología en predios eclesiales del área fundacional de Mendoza. In: Arqueología Uruguaya hacia el fin del milenio (Actas del IX Congreso Nacional de Arqueología Uruguaya), Part II: 481–489.Google Scholar
  16. Chiavazza, H., and Mafferra, L. (2007). Estado de las investigaciones arqueobotánicas en Mendoza y sus implicancias en la arqueología histórica. Revista de Arqueología Histórica Argentina y Latinoamericana 1: 127–154. Buenos Aires.Google Scholar
  17. Chiavazza, H., and Mafferra, L. (2011). Comentario. Revista de Arqueología Histórica Argentina y Latinoamericana 5: 164–168.Google Scholar
  18. Chiavazza, H., and Zorrilla, V. (2005). Conclusiones sobre la arqueología del predio mercedario de la ciudad de Mendoza. In Chiavazza, H., and Zorrilla, V. (eds.), Arqueología en el predio mercedario de la ciudad de Mendoza, Facultad de Filosofía y Letras, UNCuyo, Mendoza, pp. 357–364.Google Scholar
  19. Coltrain, J., and Leavitt, S. (2002). Climate and diet in Fremont prehistory: economic variability and abandonment of maize agriculture in the Great Salt Lake basin. American Antiquity 67: 453–485.CrossRefGoogle Scholar
  20. Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16: 436–468.CrossRefGoogle Scholar
  21. Dupras, T., and Schwarcz, H. (2001). Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28: 1199–1208.CrossRefGoogle Scholar
  22. Durán, V., and García, C. (1989). Ocupaciones Agroalfareras en el Sitio Agua de La Cueva Sector Norte (N.O. de Mendoza). Revista de Estudios Regionales CEIDER 3: 29–64.Google Scholar
  23. Durán, V., Novellino, P., Gil, A., Menéndez, L., Bernal, V., and Pérez, I. (2014). Estudios Arqueológicos y Bioarqueológicos en el Valle del Río Gualcamayo (Norte De San Juan, Argentina). In Cortegoso, V., and Durán, V. (eds.), Arqueología de ambientes de altura de Mendoza y San Juan (Argentina), Universidad Nacional de Cuyo, Mendoza, pp. 163–201.Google Scholar
  24. Froehle, A. W., Kellner, C. M., and Schoeninger, M. J. (2012). Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. American Journal of Physical Anthropology 147: 352–369.CrossRefGoogle Scholar
  25. Gambier, M. (2000). Prehistoria de San Juan, 2nd ed, Ansilta Editora, San Juan.Google Scholar
  26. García, A. (1999). Economía y movilidad de las comunidades huarpes prehispánicas. Revista de Estudios Regionales Centro Interdisciplinario de Estudios Regionales 20: 7–32.Google Scholar
  27. García, A. (2011). Agricultura huarpe y conquista española: discusión de recientes propuestas. Revista de Arqueología Histórica Argentina y Latinoamericana 5: 147–163.Google Scholar
  28. García Llorca, J. (2004). Análisis arqueológico del sitio “Allayme y Gorriti” en el distrito de Pedro Molina, Guaymallén, Mendoza. Terceras Jornadas de Arqueología Histórica y de Contacto del Centro Oeste de la Argentina y Seminario de Etnohistoria. IV Jornadas de Arqueología y Etnohistoria del Centro Oeste del País I: 161–173. UNRC, Río Cuarto.Google Scholar
  29. García Llorca, J., and Cahiza, P. (2007). Aprovechamiento de recursos faunísticos en las Lagunas de Guancache (Mendoza, Argentina). Análisis zooarqueológico de la Empozada y Altos Melién II. Chungará 39(1): 117–133.Google Scholar
  30. Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 24: 225–262.CrossRefGoogle Scholar
  31. Gil, A. (2003). Zea mays on the South American periphery: chronology and dietary importance. Current Anthropology 44: 295–300.CrossRefGoogle Scholar
  32. Gil, A., Neme, G., Tykot, R. H., Novellino, P., Cortegoso, V., and Durán, V. (2009). Stable isotopes and maize consumption in central western Argentina. International Journal of Osteoarchaeology 19: 215–236.CrossRefGoogle Scholar
  33. Gil, A., Neme, G., and Tykot, R. H. (2010). Isótopos estables y consumo de maíz en el centro occidente Argentino: tendencias temporales y espaciales. Chungará 42: 497–513.CrossRefGoogle Scholar
  34. Gil, A., Neme, G., and Tykot, R. H. (2011). Stable isotopes and human diet in central western Argentina. Journal of Archaeological Science 38: 1395–1404.CrossRefGoogle Scholar
  35. Gil, A., Neme, G., Ugan, A., and Tykot, R. H. (2014a). Oxygen isotopes and human mobility in central-western Argentina. International Journal of Osteoarchaeology 24: 31–41.CrossRefGoogle Scholar
  36. Gil, A., Villalba, R., Ugan, A., Cortegoso, V., Neme, G., Michieli, T., Novellino, P., and Durán, V. (2014b). Isotopic evidence on human bone for declining maize consumption during the Little Ice Age in central western Argentina. Journal of Archaeological Science 49:213–227.Google Scholar
  37. Heaton, T. (1999). Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science 26: 637–649.CrossRefGoogle Scholar
  38. Hedges, R., and Reynard, L. (2006). Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34: 1240–1251.CrossRefGoogle Scholar
  39. Hedges, R., Clement, J. G., Thomas, C., O’Connell, and Tamsin, C. (2007). Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133: 808–816.CrossRefGoogle Scholar
  40. Hoke, G., Garzione, C., Araneo, D., Latorre, C., Strecker, M., and Kendra, J. (2009). The stable isotope altimeter: do Quaternary pedogenic carbonates predict modern elevations? Geology 37: 1015–1018.CrossRefGoogle Scholar
  41. Hoke, G. D., Aranibar, J. N., Viale, M., Araneo, D. C., and Llano, C. (2013). Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5°S. Geochemistry, Geophysics, Geosystems 14: 962–978.CrossRefGoogle Scholar
  42. IAEA/WMO. (2006). Global network of isotopes in precipitation. The GNIP database. <http://isohis.iaea.org>.
  43. Kellner, C., and Schoeninger, M. (2007). A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology 133: 1112–1127.CrossRefGoogle Scholar
  44. Knudson, K. J. (2009). Oxygen isotope analysis in a land of environmental extremes: the complexities of isotopic work in the Andes. International Journal of Osteoarchaeology 19: 171–191.CrossRefGoogle Scholar
  45. Koch, P. L. (1998). Isotopic reconstruction of past continental environments. Annual Review of Earth Planetary Sciences 26: 573–613.CrossRefGoogle Scholar
  46. Lagiglia, H. (1976). La Cultura de Viluco del Centro Oeste Argentino. Revista del Museo de Historia Natural 3: 227–265.Google Scholar
  47. Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48: 385–390.CrossRefGoogle Scholar
  48. Longinelli, A., and Nuti, S. (1973). Oxygen isotope measurements of phosphate from fish teeth and bones. Earth and Planetary Science Letters 20: 337–340.CrossRefGoogle Scholar
  49. López, J., Quiroga, M.; Frías, Carlos; Anzorena, J., and Araujo, E. (2011). Análisis zooarqueológico en el Área Fundacional de la Ciudad de Mendoza correspondiente al período colonial temprano (siglos XVI-XVII). Poster presented in II Congreso Nacional De Zooarqueología Argentina. Olavarría; Argentina.Google Scholar
  50. Luz, B., Kolodny, Y., and Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48: 1689–1693.CrossRefGoogle Scholar
  51. Mafferra, L. (2010). La problemática en torno al registro arqueobotánico en el norte de Mendoza. In Chiavazza, H., and Bárcena, R. (eds.), Actas del XVII Congreso Nacional de Arqueología Argentina, Facultad de Filosofía y Letras. Universidad Nacional de Cuyo, Mendoza, pp. 2083–2088.Google Scholar
  52. Mansegosa, D., and Chiavazza, H. (2010). Consecuencias del proceso de colonización en la salud de la población urbana de Mendoza (Argentina): un estudio desde evidencias paleopatológicas (S. XVIII–XIX). Revista Española de Paleopatología 8: 1–18.Google Scholar
  53. Martínez Del Rio, C., Wolf, N., Carleton, S., and Gannes, Z. (2009). Isotopic ecology ten years after a call for more laboratory experiments. Biological Review 84: 91–111.CrossRefGoogle Scholar
  54. Michieli, C. T. (1998). Aproximaciones a la identificación de una cerámica indígena posthispánica del sur de San Juan. Publicaciones 22: 55–76. Instituto de Investigaciones Arqueológicas y Museo UNSJ. San Juan.Google Scholar
  55. Newton, J. (2010). Stable Isotope Ecology. In Encyclopedia of Life Sciences John Wiley, Chichester. DOI:  10.1002/9780470015902.a0021231.
  56. Panarello, H.O., and Dapeña, C. (1996). Mecanismos de recarga y salinización en las cuencas de los ríos Mendoza y Tunuyán, Mendoza, República Argentina evidenciados por isótopos ambientales. XII Congreso Geológico De Bolivia. Memorias, Tarija, Sociedad Geológica Boliviana, pp. 1–18.Google Scholar
  57. Panarello, H., Tessone, A., and Zangrando, A. (2010). Isótopos estables en arqueología: principios teóricos, aspectos metodológicos y aplicaciones en Argentina. Xama 19–23: 115–133.Google Scholar
  58. Parisii, M. (1991). Algunos datos de las poblaciones prehispánicas del Norte y Centro Oeste de Mendoza y su relación con la dominación Inca del área. Xama 4–5: 51–69.Google Scholar
  59. Pate, D. (1994). Bone chemistry and paleodiet: reconstructing prehistoric subsistence settlement systems in Australia. Journal of Anthropological Archaeology 16: 103–120.Google Scholar
  60. Petzke, K. J., Benjamin, T., Fullerb, C., and Metges, C. (2010). Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Current Opinion in Clinical Nutrition and Metabolic Care 13: 532–540.CrossRefGoogle Scholar
  61. Sanhueza, L., and Falabella, F. (2010). Analysis of stable isotopes: from the Archaic to the horticultural communities in central Chile. Current Anthropology 50: 127–136.CrossRefGoogle Scholar
  62. Schiffer, M. (1987). Formation Processes of the Archaeological Record, University of New Mexico Press, Albuquerque.Google Scholar
  63. Schwarcz, H., and Schoeninger, M. (1991). Stable isotope analysis in human nutritional ecology. Yearbook of Physical Anthropology 34: 283–321.CrossRefGoogle Scholar
  64. Sealy, J., Van Der Merwe, N., Lee-Thorp, J., and Lanham, J. (1987). Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Gecochemica et Comochinica Acta 51: 2707–2717.CrossRefGoogle Scholar
  65. Sponheimer, M., and Lee-Thorp, J. (1999). Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26: 723–728.CrossRefGoogle Scholar
  66. Tessone, A. (2011). Arqueología y Ecología Isotópica, Estudio de Isótopos Estables de Restos Humanos del Holoceno Tardío en Patagonia Meridional. Doctoral dissertation, Universidad de Buenos Aires, Buenos Aires.Google Scholar
  67. Turner, B., Kamenov, G., Kingston, J. D., and Armelagos, G. J. (2009). Insights into immigration and social class at Machu Picchu, Peru based on oxygen, strontium, and lead isotopic analysis. Journal of Archaeological Science 36: 317–332.CrossRefGoogle Scholar
  68. Tykot, R. H. (2006). Isotope analyses and the histories of maize. In Staller, J., Tykot, R., and Benz, B. (eds.), Histories of Maize, Academic, Waltham, pp. 131–142.Google Scholar
  69. Tykot, R. H., Falabella, F., Planella, T., Aspillaga, E., Sanhueza, L., and Becker, C. (2009). Stable isotopes and archaeology in central Chile: methodological insights and interpretive problems for dietary reconstruction. International Journal of Osteoarchaeology 19: 156–170.CrossRefGoogle Scholar
  70. Ugan, A., and Coltrain, J. (2012). Stable isotopes, diet, and taphonomy: a look at using isotope-based dietary reconstructions to infer differential survivorship in zooarchaeological assemblages. Journal of Archaeological Science 39: 1401–1411.CrossRefGoogle Scholar
  71. Ugan, A., Neme, G., Gil, A., Coltrain, J., Tykot, R., and Novellino, P. (2012). Geographic variation in bone carbonate and water δ18O values in Mendoza, Argentina and their relationship to prehistoric economy and settlement. Journal of Archaeological Science 39: 2752–2763.CrossRefGoogle Scholar
  72. Van der Merwe, N., and Vogel, J. C. (1978). 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature 276: 815–816.CrossRefGoogle Scholar
  73. Vogel, J., Lerman, J., and Mook, W. (1975). Natural Isotopes in Surface and Groundwater from Argentina. Hydrological Sciences-Bulletin-des Sciences Hidrologiques 20: 203–221.Google Scholar
  74. White, C. D., Spence, M. W., Stuart-Williams, H., and Schwarcz, H. P. (1998). Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25: 643–655.CrossRefGoogle Scholar
  75. White, C. D., Spence, M. W., Longstaffe, F. J., and Law, K. R. (2000). Testing the nature of Teotihuacán imperialism at Kaminaljuyú using phosphate oxygen-isotope ratios. Journal of Anthropological Research 56: 535–558.Google Scholar
  76. White, C. D., Spence, M. W., Longstaffe, F. J., Stuart-Williams, H., and Law, K. R. (2002). Geographic identities of the sacrificial victims from the Feathered Serpent Pyramid, Teotihuacan: implications for the nature of state power. Latin American Antiquity 13: 217–236.CrossRefGoogle Scholar
  77. White, C. D., Longstaffe, F. J., and Law, K. R. (2004). Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31: 233–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Horacio Chiavazza
    • 1
    Email author
  • Daniela Mansegosa
    • 2
  • Adolfo Gil
    • 1
    • 3
  1. 1.Faculta de Filosofía y LetrasUniversidad Nacional de CuyoCiudad de MendozaArgentina
  2. 2.CONICET, Facultad de Filosofía y LetrasUniversidad Nacional de CuyoCiudad de MendozaArgentina
  3. 3.CONICET-IANIGLAMuseo de Historia Natural de San RafaelSan RafaelArgentina

Personalised recommendations