Adams, R., Vista, A., Scoular, C., Awwal, N., Griffin, P., & Care, E. (2015). Automatic coding procedures for collaborative problem solving. In P. Griffin & E. Care (Eds.), Assessment and teaching of 21st century Skills (pp. 115–132). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9395-7_6.
Chapter
Google Scholar
Attali, Y., & Burstein, J. (2004). Automated essay scoring with e-rater® V.2.0. ETS research report series, 2004(2), i–21. https://doi.org/10.1002/j.2333-8504.2004.tb01972.x.
Bergner, Y. (2018). CPSX: A tool for online collaborative problem-solving in open edX (Research memorandum no. RM-18-03). Technical report. Princeton, NJ: Educational Testing Service.
Bollen, K. A., & Jackman, R. W. (1985). Regression diagnostics: An expository treatment of outliers and influential cases. Sociological Methods & Research, 13(4), 510–542.
Article
Google Scholar
Bradley, M. M., & Lang, P. J. (1999). Affective norms for english words (anew): Instruction manual and affective ratings, Technical report. Citeseer.
Carlson, J. E., & von Davier, M. (2013). Item response theory (ETS research report series no. RR-13-28). Princeton, NJ: Educational Testing Service.
Chen, J., Wang, M., Kirschner, P. A., & Tsai, C.-C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research,. https://doi.org/10.3102/0034654318791584.
Article
Google Scholar
Cleveland, W. S. (1993). Visualizing data. Murray Hill, N.J.; Summit, N. J. At & T Bell Laboratories; Published by Hobart Press. (OCLC: 607634013)
Crossley, S., Liu, R., & McNamara, D. (2017). Predicting math performance using natural language processing tools. In Proceedings of the seventh international learning analytics & knowledge (pp. 339–347).
Davis, J. H. (1973). Group decision and social interaction: A theory of social decision schemes. Psychological Review, 80(3), 97–125. https://doi.org/10.1037/h0021465.
Article
Google Scholar
Fiore, S. M., Graesser, A., Greiff, S., Griffin, P., Gong, B., Kyllonen, P., et al. (2017). Collaborative problem solving: Considerations for the national assessment of educational progress. Alexandria: National Center for Education Statistics.
Google Scholar
Griffin, P., & Care, E. (2015). Assessment and teaching of 21st century skills: Methods and approach. New York, NY: Springer. https://doi.org/10.1007/978-94-007-2324-5.
Book
Google Scholar
Griffin, P., McGaw, B., & Care, E. (2012). Assessment and teaching of 21st century skills. New York: Springer.
Book
Google Scholar
Halpin, P. F., & Bergner, Y. (2018). Psychometric models of small group collaborations. Psychometrika,. https://doi.org/10.1007/s11336-018-9631-z.
Article
Google Scholar
Hao, J., Chen, L., Flor, M., Liu, L., & von Davier, A. A. (2017). CPS-rater: Automated sequential annotation for conversations in collaborative problem-solving activities: CPS-rater. ETS research report series, 2017 (No. 1, pp. 1–9). https://doi.org/10.1002/ets2.12184.
Hlavac, M. (2013). Stargazer: Latex code and ASCII text for well-formatted regression and summary statistics tables. http://CRAN.R-project.org/package=stargazer. Accessed 11 Nov 2018.
Ilgen, D. R., Hollenbeck, J. R., Johnson, M., & Jundt, D. (2005). Teams in organizations: From input-process-output models to IMOI models. Annual Review of Psychology, 56(1), 517–543. https://doi.org/10.1146/annurev.psych.56.091103.070250.
Article
Google Scholar
Jenkins, J. R., Fuchs, L. S., Van Den Broek, P., Espin, C., & Deno, S. L. (2003). Sources of individual differences in reading comprehension and reading fluency. Journal of Educational Psychology, 95(4), 719.
Article
Google Scholar
Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38(5), 365–379. https://doi.org/10.3102/0013189X09339057.
Article
Google Scholar
Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision making. Annual Review of Psychology, 55(1), 623–655. https://doi.org/10.1146/annurev.psych.55.090902.142009.
Article
Google Scholar
Kortemeyer, G. (2006). An analysis of asynchronous online homework discussions in introductory physics courses. American Journal of Physics, 74(6), 526. https://doi.org/10.1119/1.2186684.
Article
Google Scholar
Kozlowski, S. W. J. (2015). Advancing research on team process dynamics. Organizational Psychology Review, 5(4), 270–299. https://doi.org/10.1177/2041386614533586.
Article
Google Scholar
Kozlowski, S. W. J., & Ilgen, D. R. (2006). Enhancing the efectiveness of work groups and teams. Psychological Science in the Public Interest, Supplement, 73, 77–124. https://doi.org/10.1111/j.1529-1006.2006.00030.x.
Article
Google Scholar
Larson, J. R. (2010). In search of synergy in small group performance. New York, NY: Taylor & Francis Group.
Google Scholar
Lee, Y.-H., & Jia, Y. (2014). Using response time to investigate students’ test-taking behaviors in a naep computer-based study. Large-Scale Assessments in Education, 2(1), 8.
Article
Google Scholar
Liu, L., Hao, J., von Davier, A. A., Kyllonen, P., & Zapata-Rivera, D. (2015). A tough nut to crack: Measuring collaborative problem solving. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on computational tools for real-world skill development (pp. 344–359). Hershey, PA: IGI-Global. https://doi.org/10.1136/bmj.330.7485.0-h.
Chapter
Google Scholar
Marks, M., Mathieu, J. E., & Zaccaro, S. J. (2001). A conceptual framework and taxonomy of team processes. Academy of Management Journal, 26(3), 356–376.
Google Scholar
Mathieu, J. E., Tannenbaum, S. I., Donsbach, J. S., & Alliger, G. M. (2014). A review and integration of team composition models: Moving toward a dynamic and temporal framework. Journal of Management,. https://doi.org/10.1177/0149206313503014.
Article
Google Scholar
OECD. (2017). PISA 2015 results (volume V): Collaborative problem solving. Paris: PISA, OECD Publishing. https://doi.org/10.1787/9789264285521-en.
Book
Google Scholar
Ogan, A., Finkelstein, S., Walker, E., Carlson, R., & Cassell, J. (2012). Rudeness and rapport: Insults and learning gains in peer tutoring. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) LNCS (Vol. 7315, pp. 11–21). https://doi.org/10.1007/978-3-642-30950-2_2.
Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1969). The measurement of meaning. Chicago: Aldine Publishing Company.
Google Scholar
Pentland, A. (2010). To signal is human: Real-time data mining unmasks the power of imitation, kith and charisma in our face-to-face social networks. American Scientist, 98(3), 204–211.
Article
Google Scholar
R Core Team. (2019). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/.
Thurstone, L. L. (1937). Ability, motivation, and speed. Psychometrika, 2(4), 249–254.
Article
Google Scholar
van der Linden, W. J. (2009). Conceptual issues in response-time modeling. Journal of Educational Measurement, 46(3), 247–272.
Article
Google Scholar
Webb, N. M. (1995). Group collaboration in assessment: Multiple objectives, processes, and outcomes. Educational Evaluation and Policy Analysis, 17(2), 239–261. https://doi.org/10.3102/01623737017002239.
Article
Google Scholar
Wise, A. F., & Cui, Y. (2018). Unpacking the relationship between discussion forum participation and learning in MOOCs. In Proceedings of the 8th international conference on learning analytics and knowledge—LAK ’18 (pp. 330–339). https://doi.org/10.1145/3170358.3170403.