Skip to main content


Log in

How to Implement Educational Robotics’ Programs in Italian Schools: A Brief Guideline According to an Instructional Design Point of View

  • Original research
  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript


Nowadays, children and teenagers use technology products in an increasingly passive way. As simple consumers they cannot benefit from the opportunities of designing technology, which has a learning value. Educational Robotics (ER) programs are particularly effective in delivering contents of difficult disciplines: they can re-establish a balance between the learners and the technological devices, because the learners act as programmers and can develop their computational thinking. Therefore, we believe the school should upgrade its teaching methods, through the implementation of ER programs. This could be done without introducing a new subject, since technology could be considered like an interdisciplinary application module within pre-existing subjects. In this paper, we provide an overview of ER programs to share a practical guidance with those who want to plan educational workshops in their institutes. First, we analyze ER theoretical and epistemological fundamentals: ER has roots in recent and classic disciplines (psychology, cybernetics, robotics, cognitive science…), but it is also consistent with the principles of widely recognized pedagogies. Then, we describe successful Italian projects with a focus on regulations concerning ER programs. As a result of this analysis, we propose a brief guideline on the following topics: (a) needs analysis, (b) target segmentation, (c) objectives, (d) laboratory setting, (e) contents definition, (f) activities, (g) evaluation tools. Finally, we show that designing learning paths according to this method could also promote a more rigorous (and not only qualitative) evaluation, and then enhance both research and practice in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. D. M. 11th March, 2016, n. 157.

  2. C (2014) 9952, 17th December, 2014.

  3. C. M. 21th May, 2002, n. 5; C.M. 28th October, 2002, n.116.

  4. D. M. 19th October, 2016, n. 797.


  • Ackermann, E. K. (1996). Perspective-taking and object construction: Two keys to learning. In Y. Kafai & M. Resnick (Eds.), Constructionism in practice: Designing, thinking, and learning in a digital world (pp. 25–37). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Agostini, A., Micucci, D., & Rolandi, A. (2014). La robotica educativa: Un’esperienza condotta nelle scuole primarie. Nuovi Processi e Paradigmi per la Didattica (pp. 551–560). Napoli: AICA–Università degli Studi di Napoli.

    Google Scholar 

  • AICA (2012). Informatica per la didattica. In DIDAMATICA 2012Informatica per la didattica. Università degli Studi di Bari, Bari.

  • AICA (2014). Nuovi Processi e Paradigmi per la Didattica. In DIDAMATICA 2014Nuovi Processi e Paradigmi per la Didattica. Università degli Studi di Napoli, Napoli.

  • AICA (2016). Innovazione: sfida comune di scuola, università, ricerca e impresa. In DIDAMATICA 2016Innovazione: sfida comune di scuola, università, ricerca e impresa. Università degli Studi di Udine, Udine.

  • Alimisis, D. (2012). Exploring paths to integrate robotics in science and technology education: From teacher training courses to school classes. International Journal of Robots, Education and Art, 2(2), 16–23.

    Article  Google Scholar 

  • Atmatzidou, S., & Demetriadis, S. (2012). Evaluating the role of collaboration scripts as group guiding tools in activities of Educational Robotics. Paper presented at the 2012. In 12th IEEE international conference on advanced learning technologies, Rome, Italy.

  • Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers and Education, 58, 978–988.

    Article  Google Scholar 

  • Bers, M.U., Ponte, I., Juelich, C., Viera, A. & Schenker, J. (2002). Teachers as Designers: Integrating Robotics in Early Childhood Education. Information technology in childhood education annual, 2002 (1), 123–145. Association for the Advancement of Computing in Education (AACE). Retrieved October 11, 2017 from

  • Besio S., Caprino F., & Laudanna E. (2008). Profiling robot-mediated play for children with disabilities through ICF-CY: The example of the european project IROMEC. In: Miesenberger K., Klaus J., Zagler W., Karshmer A. (eds) Computers Helping People with Special Needs. ICCHP 2008. Lecture Notes in Computer Science, vol 5105. Springer, Berlin.

  • Bhargava, R. (2002). Designing a computational construction kit for the blind and visually impaired (Doctoral dissertation, Massachusetts Institute of Technology).

  • Bley, S. J., Hametner, M., Dimitrova, A., Ruech, R., De Rocchi, A., Gschwend, E., & Umpfenbach, K. (2017). Smarter, greener, more inclusive? Indicators to support the Europe 2020 strategy, 2017 (ed).

  • Bloom, B., Krathwohl, D., & Masia, B. (1984). Taxonomy of educational objectives. New York: Longman.

    Google Scholar 

  • Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711–722.

    Google Scholar 

  • Celli, L. M., & Young, N. D. (2017). Contemporary pedagogy for the adult learning. Pupil: International Journal of Teaching, Education and Learning., 1(4), 67–77.

    Google Scholar 

  • Censis. (2017). 51° Rapporto sulla situazione sociale del Paese. Angeli.

  • Cilliers, E. J. (2017). The challenge of teaching Generation Z. People: International Journal of Social Sciences, 3(1), 188–198.

    Google Scholar 

  • Claparède, E. (1971). L’educazione funzionale. Firenze: Giunti Bemporad Marzocco.

    Google Scholar 

  • Dauksevicuite, I. (2016). Unlocking the full potential of digital native learners. Mc Graw Hill Education handouts: Henley Business School.

    Google Scholar 

  • Dautenhahn, K. (1999). Robots as social actors: Aurora and the case of autism. In Proceedings CT99, the third international cognitive technology conference, San Francisco (Vol. 359, p. 374).

  • Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: background, motivation and challenges. In Pragmatics and cognition, 12:1 2004 (pp. 1–35).

  • Decroly, O., Boon, G., & Valeri, M. (1973). Verso la scuola rinnovata. Firenze: La nuova Italia.

    Google Scholar 

  • Denicolai, L., Grimaldi, R., & Palmieri, S. (2016). Un protocollo di osservazione nella scuola dell’infanzia: individuazione e potenziamento delle abilità prescolari In: Innovazione: sfida comune di scuola, università, ricerca e impresa. Udine, AICA—Università degli Studi di Udine.

  • Dewey, J. (1938). Experience and education. New York: Macmillan.

    Google Scholar 

  • E-rob: e-learning per la Robotica Educativa| E-Rob. (2018). Retrieved 12 December 2017, from

  • Commission, European. (2014). Agenda Digitale Europea. Lussemburgo: Ufficio delle pubblicazioni dell’Unione europea.

    Google Scholar 

  • Miur—Ministero dell’istruzione, dell’università e della ricerca. (2016). Home. [online] Available at: Accessed 10 Oct. 2016.

  • Eguchi, A. (2015). Educational robotics as a learning tool for promoting rich environments for active learning (REALs). Handbook of Research on Educational Technology Integration and Active Learning (pp. 19–47). Hershey, PA: IGI Global.

  • Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153-169. Retrieved from

  • Elkind, D. (2008). Forward. In M. U. Bers (Ed.), Block to robots (pp. xi–xiv). New York: Teachers College Press.

  • Europe 2020 strategy. (2018). European Commission—European Commission. Retrieved 13 December 2017, from

  • European Commission (2010). A Digital Agenda for Europe, COM (2010) 245 final, Brussels.

  • Ferrari, E., Robins, B., & Dautenhahn, K. (2009). Robot as a social mediator-a play scenario implementation with children with autism. In 8th international conference on interaction design and children, IDC (pp. 243–252).

  • Feuerstein, R., & Feuerstein, S. (1991). Mediated learning experience: A theoretical review. In R. Feuerstein, P. S. Klein, & A. J. Tannenbaum (Eds.), Mediated Learning Experience (MLE): Theoretical, Psychosocial and Learning Implications. London: Freund Publishing House Ltd.

    Google Scholar 

  • (2016). Gazzetta Ufficiale. [online] Available at: Accessed 16 Oct. 2016.

  • Grimaldi, R. (2014). Robotica educativa, nuovi linguaggi, inclusione scolastica e sociale. In: Gallina, M. and Riverso, T. (Eds), Modelli culturali, socio-educativi e linguaggi. Riflessioni sul pensiero di Emanuele Riverso. Milano: Angeli, (pp. 124–128).

  • Grimaldi, R. (2015). A scuola con i robot. Innovazione didattica, sviluppo delle competenze e inclusione sociale. Il Mulino, Bologna.

  • Grimaldi, R., Grimaldi, B., Marcianò, G., Palmieri, S., & Siega, S. (2012). Robotica educativa e potenziamento delle abilità visuo-spaziali. Didamatica 2012—Informatica per la didattica (pp. 1–10). Bari: AICA—Università degli Studi di Bari.

    Google Scholar 

  • Huang, R., & Price, J. K. (2016). ICT in education in global context. Springer: Berlin.

  • Kauppinen, M., Kiili, C., & Coiro, J. (2018). Experiences in digital video composition as sources of self- efficacy toward technology use. International Journal of Smart Education and Urban Society, 9, 1.

    Article  Google Scholar 

  • Kazakoff, E. R., Sullivan, A., & Bers, M.U. (2013). The Effect of a Classroom-Based Intensive Robotics and Programming Workshop on Sequencing Ability in Early Childhood. Early Childhood Education Journal, 41(4), pp. 245–255.

  • Khine, M. S. (Ed.). (2017). Robotics in STEM education: redesigning the learning experience. Springer.

  • Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning and Education., 4(2), 193–212.

    Article  Google Scholar 

  • Kolberg, E., & Orlev, N. (2001). Robotics learning as a tool for integrating science-technology, curriculum in K-12 schools. In Paper presented at the 31st ASEE/IEEE Frontiers in Education Conference, Reno.

  • Kozulin, A., Gindis, B., Ageyev, V. S., & Miller, S. M. (Ed.) (2003). Vygotsky’s educational theory in cultural context. Cambridge.

  • Mager, R. F. (2004). Preparing instructional objectives. Mumbai: Jaico Pub. House.

    Google Scholar 

  • Marcianò, G. (2013). Robotica educativa: un metodo per la didattica laboratoriale, Bricks, Giugno 3(2), (pp. 5–9).

  • Mattioli, C., De Paoli, D., & Margiotta, R. (Eds). (2015). BookletRobotica educativa. La robotica per tutti, Fondazione Mondo Digitale, (pp. 12–36). Available at: Accessed 11 Oct. 2014.

  • Merino, E. (2013). mOway Italia: una nuova risorsa per la Robotica Educativa nelle scuole del I ciclo. Bricks, Giugno, 3(2), pp. 54–57.

  • Miller, D. P., Nourbakhsh, I. R., & Sigwart, R. (2008). Robots for education. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1283–1301). New York: Springer.

    Chapter  Google Scholar 

  • Montessori, M. (1950). La Scoperta del bambino. Garzanti Editore Milano.

  • Moro, M., Agatolio, F., & Menegatti, E. (2018). The RoboESL Project: Development, Evaluation and Outcomes Regarding the Proposed Robotic Enhanced Curricula. International Journal of Smart Education and Urban Society (IJSEUS), 9(1), (pp 48–60). Multi-sectoral Network on Educational Robotics–Italy. (2018). Digital Single Market. Retrieved 12 January 2018, from

  • Nourbakhsh, I. R., Hamner, E., Crowley, K., & Wilkinson, K. (2004). Formal measures of learning in a secondary school mobile robotics course. In Paper presented at the 2004 IEEE international conference on robotics and automation, New Orleans.

  • Oppliger, D. (2002). Using FIRST LEGO league to enhance engineering education and to increase the pool of future engineering students (work in progress). In Paper presented at the 32nd ASEE/IEEE Frontiers in Education Conference, Boston.

  • Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas (2nd ed.). New York: Basicbooks.

    Google Scholar 

  • Papert, S. (1986). Constructionism. [Massachusetts]: Massachusetts Institute of Technology, Media Laboratory, Epistemology and Learning Group.

  • Pennazio, V. (2015). Disabilità, gioco e robotica nella scuola dell’infanzia. TD Tecnologie Didattiche, 23(3), 155–163.

    Google Scholar 

  • Prensky, M. (2001). Digital natives, digital immigrants part 1. On the horizon, 9(5), 1–6.

    Article  Google Scholar 

  • Redecker, C. (2017). European Framework for the Digital Competence of Educators: DigCompEdu (No. JRC107466). Joint Research Centre (Seville site).

  • Reed, D. K., & Vaughn, S. (2010). Reading interventions for older students. In T. A. Glover & S. Vaughn (Eds.), Response to intervention: Empowering all students to learn, a critical account of the science and practice (pp. 143–186). New York: Guilford Press.

    Google Scholar 

  • Rothman, D. (2016). A Tsunami of learners called Generation Z.

  • Sandini, G. (2014). Robotica Educativa Accordo di Rete Nazionale. Accordo di rete-protocollo d’intesa per la creazione di una strategia nazionale a lungo termine per la robotica educativa. Fondazione Mondo Digitale. Retrieved from:

  • Sklar, E., & Eguchi, A. (2004). RoboCupJunior—Four years later. In Proceedings of RoboCup-2004: Robot Soccer World Cup VIII.

  • Sklar, E., Eguchi, A., & Johnson, J. (2002). Examining the team robotics through RoboCupJunior. In Proceedings of the Annual Conference of Japan Society for Educational Technology.

  • Sklar, E., Eguchi, A., & Johnson, J. (2003). Scientific challenge award: robocupjunior-Learning with Educational Robotics. AI Magazine, 24(2), 43–46.

    Google Scholar 

  • Strawhacker, A., & Bers, U. M. (2014). I want my robot to look for food: Comparing Kindergartner’s programming comprehension using tangible, graphic, and hybrid user interfaces. In International journal of technology and design education, 25(3), (pp. 293–319).

  • Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373–394.

    Article  Google Scholar 

Download references


The authors would like to thank the Civic Museum Foundation of Rovereto (Fondazione Museo Civico di Rovereto), recognized by MIUR (Ministry of Instruction, University and Research) as the officially Training Institution for ER, for its hospitality during their laboratories.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. B. Ronsivalle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronsivalle, G.B., Boldi, A., Gusella, V. et al. How to Implement Educational Robotics’ Programs in Italian Schools: A Brief Guideline According to an Instructional Design Point of View. Tech Know Learn 24, 227–245 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: