Skip to main content

Advertisement

Log in

Inferring Learning from Big Data: The Importance of a Transdisciplinary and Multidimensional Approach

  • Original research
  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

The use of big data in higher education has evolved rapidly with a focus on the practical application of new tools and methods for supporting learning. In this paper, we depart from the core emphasis on application and delve into a mostly neglected aspect of the big data conversation in higher education. Drawing on developments in cognate disciplines, we analyse the inherent difficulties in inferring the complex phenomenon that is learning from big datasets. This forms the basis of a discussion about the possibilities for systematic collaboration across different paradigms and disciplinary backgrounds in interpreting big data for enhancing learning. The aim of this paper is to provide the foundation for a research agenda, where differing conceptualisations of learning become a strength in interpreting patterns in big datasets, rather than a point of contention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Adapted from Ackoff 1989)

Fig. 2

Adapted from Horvath and Donoghue (2016)

Fig. 3

Adapted from Lodge and Lewis (2012)

Fig. 4

Similar content being viewed by others

References

  • Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, 3–9.

    Google Scholar 

  • Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated learning and education. Educational Researcher, 25, 5–11.

    Article  Google Scholar 

  • Arum, R., & Roksa, J. (2011). Academically adrift: Limited learning on college campuses. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Baker, R. S. (2016). Stupid tutoring systems, intelligent humans. International Journal of Artificial Intelligence in Education, 26(2), 600–614.

    Article  Google Scholar 

  • Barnett, R. (2004). Learning for an unknown future. Higher Education Research & Development, 23(3), 247–260. doi:10.1080/0729436042000235382.

    Article  Google Scholar 

  • Basler, M. H. (2009). Utility of the McNamara fallacy. BMJ, 339, b3141. doi:10.1136/bmj.b3141.

    Article  Google Scholar 

  • Berger, J. O., & Berry, D. A. (1988). Statistical analysis and the illusion objectivity. American Scientist, 76, 159–165.

    Google Scholar 

  • Blackman, K. C. A., Zoellner, J., Berrey, L. M., Alexander, R., Faning, J., Hill, J. L., et al. (2013). Assessing the internal and external validity of mobile health physical activity promotion interventions: A systematic literature review using the RE_AIM framework. Journal of Medical Internet Research, 15(10), e224. doi:10.2196/jmir.2745.

    Article  Google Scholar 

  • Buckingham Shum, S., & Crick, R. D. (2016). Learning analytics for 21st century competencies. Journal of Learning Analytics, 3(2), 6–21.

    Article  Google Scholar 

  • Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49(12), 997–1003.

    Article  Google Scholar 

  • Datnow, A., & Hubbard, L. (2016). Teacher capacity for and beliefs about data-driven decision making: A literature review of international research. Journal of Educational Change, 17(1), 7–28.

    Article  Google Scholar 

  • De Houwer, J., Barnes-Holmes, D., & Moors, A. (2013). What is learning? On the nature and merits of a functional definition of learning. Psychonomic Bulletin & Review, 20(4), 631–642. doi:10.3758/s13423-013-0386-3.

    Article  Google Scholar 

  • Dover, A. G., & Schultz, B. D. (2016). Troubling the edTPA: Illusions of objectivity and rigor. The Educational Forum, 80(1), 95–106.

    Article  Google Scholar 

  • Dunning, T. (2008). Improving causal inference: Strengths and limitations of natural experiments. Political Research Quarterly, 61, 282–293.

    Article  Google Scholar 

  • Farrell, C. C., & Marsh, J. A. (2016). Contributing conditions: A qualitative comparative analysis of teachers’ instructional responses to data. Teaching and Teacher Education, 60, 398–412.

    Article  Google Scholar 

  • Ferguson, R., Hoel, T., Scheffel, M., & Drachsler, H. (2016). Guest editorial: Ethics and privacy in learning analytics. Journal of Learning Analytics, 3(1), 5–15.

    Article  Google Scholar 

  • Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. Tech Trends, 59(1), 64–71.

    Article  Google Scholar 

  • Green, L. W., & Glasgow, R. E. (2006). Evaluating the relevance, generalization, and applicability of research: Issues in external validation and translation methodology. Evaluation & The Health Professionals, 29(1), 126–153.

    Article  Google Scholar 

  • Hauben, M., Reich, L., Gerrits, C. M., & Younus, M. (2007). Illusion of objectivity and a recommendation for reporting data mining results. European Journal of Clinical Pharmacology, 63, 517–521.

    Article  Google Scholar 

  • Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

    Google Scholar 

  • Horvath, J. C., & Donoghue, G. M. (2016). A bridge too far–revisited: Reframing Bruer’s neuroeducation argument for modern science of learning practitioners. Frontiers in Psychology, 7, 377.

    Article  Google Scholar 

  • Horvath, J. C., & Lodge, J. M. (2017). A framework for organizing and translating science of learning research. In J. C. Horvath, J. M. Lodge, & J. A. C. Hattie (Eds.), From the laboratory to the classroom: Translating learning sciences for teachers. Abingdon: Routledge.

    Google Scholar 

  • Horvath, J. C., Lodge, J. M., & Hattie, J. A. C. (2017). From the laboratory to the classroom: Translating science of learning for teachers. Abingdon: Routledge.

    Google Scholar 

  • Jacobson, M. J., Kapur, M., & Reimann, P. (2016). Conceptualizing debates in learning and educational research: Toward a complex systems conceptual framework of learning. Educational Psychologist, 51(2), 210–218. doi:10.1080/00461520.2016.1166963.

    Article  Google Scholar 

  • Jonassen, D., & Land, S. (2012). Theoretical foundations of learning environments. Abingdon, UK: Routledge.

    Google Scholar 

  • Jones, C. & Kennedy, G. (2011). Stepping beyond the paradigm wars: pluralist methods for research in learning technology. In ALTC 2011 Proceedings of the 18th international conference of the Association for Learning Technology (pp. 18–28). Leeds: University of Leeds, September 6–8, 2011.

  • Kitson, A. L., Harvey, G., & McCormack, B. (1998). Enabling the implementation of evidence based practice: A conceptual framework. Quality in Health Care, 7, 149–159.

    Article  Google Scholar 

  • Kitson, A. L., Rycroft-Malone, J., Harvey, G., McCormack, B., Seers, K., & Titchen, A. (2008). Evaluating the successful implementation of evidence into practice using the PARiHS framework: Theoretical and practical challenges. Implementation Science. doi:10.1186/1748-5908-3-1.

    Google Scholar 

  • Knight, S., Buckingham Shum, S., & Littleton, K. (2014). Epistemology, assessment, pedagogy: Where learning meets analytics in the middle space. Journal of Learning Analytics, 1(2), 23–47.

    Article  Google Scholar 

  • Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212–218. doi:10.1207/s15430421tip4104_2.

    Article  Google Scholar 

  • Laranjo, L., Arguel, A., Neves, A. L., Gallagher, A. M., Kaplan, R., Mortimer, N., et al. (2014). The influence of social networking sites on behavior change: A systematic review and meta-analysis. Journal of the American Medical Informatics Association, 22(1), 243–256.

    Article  Google Scholar 

  • Lewis, M. J., & Lodge, J. M. (2016). Keep calm and credential on: Linking learning, life and work practices in a complex world. In D. Ifenthaler, N. Bellin-Mularski, & D-K. Mah (Eds.), Foundation of digital badges and micro-credentials (pp. 41–54). Cham: Springer International Publishing. doi:10.1007/978-3-319-15425-1_3.

  • Liu, D. Y.-T., Rogers, T., & Pardo, A. (2015). Learning analytics—Are we at risk of missing the point? In T. Reiners, B. R. von Konsky, D. Gibson, V. Chang, L. Irving & K. Clarke (Eds.), Globally connected, digitally enabled. Proceedings ascilite 2015 in Perth.

  • Lodge, J. M., & Lewis, M. J. (2012). Pigeon pecks and mouse clicks: Putting the learning back into learning analytics. In M. Brown, M. Hartnett, & T. Stewart (Eds.), Future challenges, sustainable futures. Proceedings ascilite Wellington 2012.

  • Macfadyen, L. P., Dawson, S., Pardo, A., & Gašević, D. (2014). Embracing big data in complex educational systems: The learning analytics imperative and the policy challenge. Research & Practice in Assessment, 9(2), 17–28.

    Google Scholar 

  • Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? American Psychologist, 70(6), 487.

    Article  Google Scholar 

  • Milligan, S., (2015, March). Crowd-sourced learning in MOOCs: Learning analytics meets measurement theory. In Proceedings of the Fifth International Conference on Learning Analytics and Knowledge (pp. 151–155). New York, NY: ACM.

  • Mislevy, R., & Gitomer, D. (1996). The role of probability-based inference in an intelligent tutoring system. User-Mediated and User-Adapted Interaction, 5, 253–282. doi:10.1037/e652102011-001.

    Article  Google Scholar 

  • Nathan, M. J., & Alibali, M. W. (2010). Learning sciences. Wiley Interdisciplinary Reviews: Cognitive Science, 1(3), 329–345.

    Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nichols, S. L., & Berliner, D. C. (2007). Collateral damage: How high-stakes testing corrupts America’s schools. Cambridge, MA: Harvard Education Press.

    Google Scholar 

  • Nicolescu, B. (2002). Manifesto of transdisciplinarity. Albany, Ny: State University if New York Press.

    Google Scholar 

  • Palghat, K., Horvath, J. C., & Lodge, J. M. (2017). The hard problem of ‘educational neuroscience’. Trends in Neuroscience & Education, 6(1), 204–210. doi:10.1016/j.tine.2017.02.001.

    Article  Google Scholar 

  • Pardos, Z. A., Baker, R. S., Gowda, S. M., & Heffernan, N. T. (2011). The sum is greater than the parts: Ensembling models of student knowledge in educational software. SIGKDD Explorations, 13(2), 37–44.

    Article  Google Scholar 

  • Powers, J. T., Cook, J. E., Purdie-Vaughns, V., Garcia, J., Apfel, N., & Cohen, G. L. (2016). Changing environments by changing individuals: The emergent effects of psychological intervention. Psychological Science, 27(2), 150–160.

    Article  Google Scholar 

  • Prinsloo, P., & Slade, S. (2016). Student vulnerability, agency, and learning analytics: An exploration. Journal of Learning Analytics, 3(1), 159–182.

    Article  Google Scholar 

  • Reeves, T. (2006). Design research from a technology perspective. In J. V. D. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 52–66). New York: Routledge.

    Google Scholar 

  • Reimann, P. (2016). Connecting learning analytics with learning research: The role of design-based research. Learning: Research & Practice, 2(2), 130–142.

    Google Scholar 

  • Rogers, T. (2015). Critical realism and learning analytics research: Epistemological implications of an ontological foundation. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 223–230). New York, NY: ACM.

  • Rowntree, D. (1987). Assessing students: How shall we know them?. London: Kogan Page.

    Google Scholar 

  • Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380–1400.

    Article  Google Scholar 

  • Siemens, G., & Baker, R. S. (2012). Learning analytics and educational data mining: Towards communication and collaboration. In S. Buckingham Shum, D. Gašević, & R. Ferguson (Eds.), Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 252–254). New York, NY: ACM.

    Google Scholar 

  • Siemens, G., & Gašević, D. (2012). Guest editorial: Learning and knowledge analytics. Educational Technology & Society, 15(3), 1–2.

    Google Scholar 

  • Smoliar, S. W. (1987). Book review: “Induction: Processes of inference, learning, and discovery”. IEEE Expert, 2(3), 92–93.

    Article  Google Scholar 

  • Soderstrom, N. C., & Bjork, R. A. (2015). Learning versus performance: An integrative review. Perspectives on Psychological Science, 10(2), 176–199.

    Article  Google Scholar 

  • Strickland, J. S. (2014). Predictive modelling and analytics. Colorado: Lulu Press.

    Google Scholar 

  • Wise, A. F., & Shaffer, D. W. (2015). Why theory matters more than ever in the age of big data. Journal of Learning Analytics, 2, 5–13.

    Article  Google Scholar 

  • Yarkoni, T. (2012). Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Current Directions in Psychological Science, 21(6), 391–397. doi:10.1177/0963721412457362.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (JML) [Grant Number SR120300015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Lodge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodge, J.M., Alhadad, S.S.J., Lewis, M.J. et al. Inferring Learning from Big Data: The Importance of a Transdisciplinary and Multidimensional Approach. Tech Know Learn 22, 385–400 (2017). https://doi.org/10.1007/s10758-017-9330-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-017-9330-3

Keywords

Navigation